Title | Streaming Normalization: Towards Simpler and More Biologically-plausible Normalizations for Online and Recurrent Learning |
Publication Type | CBMM Memo |
Year of Publication | 2016 |
Authors | Poggio T., Liao Q., Kawaguchi K. |
Date Published | 10/2016 |
Abstract | We systematically explored a spectrum of normalization algorithms related to Batch Normalization (BN) and propose a generalized formulation that simultaneously solves two major limitations of BN: (1) online learning and (2) recurrent learning. Our proposal is simpler and more biologically-plausible. Unlike previous approaches, our technique can be applied out of the box to all learning scenarios (e.g., online learning, batch learning, fully-connected, convolutional, feedforward, recurrent and mixed — recurrent and convolutional) and compare favorably with existing approaches. We also propose Lp Normalization for normalizing by different orders of statistical moments. In particular, L1 normalization is well-performing, simple to implement, fast to compute, more biologically-plausible and thus ideal for GPU or hardware implementations. |
URL | https://cbmm.mit.edu/sites/default/files/publications/CBMM-Memo-057.pdf |
Citation Key | 220 |
Streaming Normalization: Towards Simpler and More Biologically-plausible Normalizations for Online and Recurrent Learning
57