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Abstract

With nearly one billion online videos viewed everyday,

an emerging new frontier in computer vision research is

recognition and search in video. While much effort has

been devoted to the collection and annotation of large scal-

able static image datasets containing thousands of image

categories, human action datasets lag far behind. Cur-

rent action recognition databases contain on the order of

ten different action categories collected under fairly con-

trolled conditions. State-of-the-art performance on these

datasets is now near ceiling and thus there is a need for the

design and creation of new benchmarks. To address this is-

sue we collected the largest action video database to-date

with 51 action categories, which in total contain around

7,000 manually annotated clips extracted from a variety of

sources ranging from digitized movies to YouTube. We use

this database to evaluate the performance of two represen-

tative computer vision systems for action recognition and

explore the robustness of these methods under various con-

ditions such as camera motion, viewpoint, video quality and

occlusion.

1. Introduction

With several billion videos currently available on the in-

ternet and approximately 24 hours of video uploaded to

YouTube every minute, there is an immediate need for ro-

bust algorithms that can help organize, summarize and re-

trieve this massive amount of data. While much effort

has been devoted to the collection of realistic internet-

scale static image databases [17, 23, 27, 4, 5], current ac-

tion recognition datasets lag far behind. The most popular

benchmark datasets, such as KTH [20], Weizmann [3] or the

IXMAS dataset [25], contain around 6-11 actions each. A

typical video clip in these datasets contains a single staged

actor with no occlusion and very limited clutter. As they

are also limited in terms of illumination and camera posi-

tion variation, these databases are not quite representative

of the richness and complexity of real-world action videos.

Figure 1. Sample frames from the proposed HMDB51 [1] (from

top left to lower right, actions are: hand-waving, drinking, sword

fighting, diving, running and kicking). Some of the key challenges

are large variations in camera viewpoint and motion, the cluttered

background, and changes in the position, scale, and appearances

of the actors.

Recognition rates on these datasets tend to be very high.

A recent survey of action recognition systems [26] reported

that 12 out of the 21 tested systems perform better than 90%

on the KTH dataset. For the Weizmann dataset, 14 of the 16

tested systems perform at 90% or better, 8 of the 16 better

than 95%, and 3 out of 16 scored a perfect 100% recogni-

tion rate. In this context, we describe an effort to advance

the field with the design of a large video database contain-

ing 51 distinct action categories, dubbed the Human Mo-

tion DataBase (HMDB51), that tries to better capture the

richness and complexity of human actions (see Figure 1).
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Related work. An overview of existing datasets is shown

in Table 1. In this list, the Hollywood [11] and UCF50 [2]

datasets are two examples of recent efforts to build more re-

alistic action recognition datasets by considering video clips

taken from real movies and YouTube. These datasets are

more challenging due to large variations in camera motion,

object appearance and changes in the position, scale and

viewpoint of the actors, as well as cluttered background.

The UCF50 dataset extends the 11 action categories from

the UCF YouTube dataset for a total of 50 action categories

with real-life videos taken from YouTube. Each category

has been further organized by 25 groups containing video

clips that share common features (e.g. background, camera

position, etc.).

The UCF50, its close cousin, the UCF Sports dataset

[16], and the recently introduced Olympic Sports dataset

[14], contain mostly sports videos from YouTube. As a re-

sult of searching for specific titles on YouTube, these types

of actions are usually unambiguous and highly distinguish-

able from shape cues alone (e.g., the raw positions of the

joints or the silhouette extracted from single frames).

To demonstrate this point, we conducted a simple exper-

iment: using Amazon Mechanical Turk, 14 joint locations

were manually annotated at every frame for 5 randomly se-

lected clips from each of the 9 action categories of the UCF

Sports dataset. Using a leave-one-clip-out procedure, clas-

sifying the features derived from the joint locations at sin-

gle frames results in a recognition rate above 98% (chance

level 11%). This suggests that the information of static joint

locations alone is sufficient for the recognition of those ac-

tions while the use of joint kinematics is not necessary. This

seems unlikely to be true for more real-world scenarios. It is

also incompatible with previous results of Johansson et al.

[9], who demonstrated that joint kinematics play a critical

role for the recognition of biological motion.

We conducted a similar experiment on the proposed

HMDB51 where we picked 10 action categories similar to

those of the UCF50 (e.g. climb, climb-stairs, run, walk,

jump, etc.) and obtained manual annotations for the 14 joint

locations in a set of over 1,100 random clips. The classifi-

cation accuracy of features derived from the joint locations

at single frames now reaches only 35% (chance level 10%)

and is much lower than the 54% obtained using motion fea-

tures from the entire clip (Section 4.1). We also computed

the classification accuracy of the 10 action categories of the

UCF50 using the motion features and obtained an accuracy

of 66%.

These small experiments suggest that the proposed

HMDB51 is an action dataset whose action categories

mainly differ in motion rather than static poses and can thus

be seen as a valid contribution for the evaluation of action

recognition systems as well as for the study of relative con-

tributions of motion vs. shape cues, a current topic in bio-

Table 1. A list of existing datasets, the number of categories, and

the number of clips per category sorted by year.

Dataset Ref Year Actions Clips

KTH [20] 2004 6 100

Weizmann [3] 2005 9 9

IXMAS [25] 2006 11 33

Hollywood [11] 2008 8 30-129

UCF Sports [16] 2009 9 14-35

Hollywood2 [13] 2009 12 61-278

UCF YouTube [12] 2009 11 100

Olympic [14] 2010 16 50

UCF50 [2] 2010 50 min. 100

HMDB51 [1] 2011 51 min. 101

logical motion perception and recognition [22].

Contributions. The proposed HMDB51 contains 51 dis-

tinct action categories, each containing at least 101 clips

for a total of 6,766 video clips extracted from a wide range

of sources. To the best of our knowledge, it is to-date the

largest and perhaps most realistic available dataset. Each

clip was validated by at least two human observers to en-

sure consistency. Additional meta information allows for

a precise selection of testing data, as well as training and

evaluation of recognition systems. The meta tags for each

clip include the camera view-point, the presence or absence

of camera motion, the video quality, and the number of ac-

tors involved in the action. This should permit the design

of more flexible experiments to evaluate the performance

of computer vision systems using selected subsets of the

database.

We use the proposed HMDB51 to evaluate the perfor-

mance of two representative action recognition systems. We

consider the biologically-motivated action recognition sys-

tem by Jhuang et al. [8], which is based on a model of the

dorsal stream of the visual cortex and was recently shown

to achieve on-par with humans for the recognition of rodent

behaviors in the homecage environment [7]. We also con-

sider the spatio-temporal bag-of-words system by Laptev

and colleagues [10, 11, 24].

We compare the performance of the two systems, eval-

uate their robustness to various sources of image degrada-

tions and discuss the relative role of shape vs. motion infor-

mation for action recognition. We also study the influence

of various nuisances (camera motion, position, video qual-

ity, etc.) on the recognition performance of these systems

and suggest potential avenues for future research.

2. The Human Motion DataBase (HMDB51)

2.1. Database collection

In order to collect human actions that are representative

of everyday actions, we started by asking a group of stu-

dents to watch videos from various internet sources and dig-

itized movies and annotate any segment of these videos that
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Figure 2. Distribution of the various conditions for the HMDB51:

a) visible body part, b) camera motion, c) camera view point, and

d) clip quality.

represents a single non-ambiguous human action. Students

were asked to consider a minimum quality standard like a

single action per clip, a minimum of 60 pixels in height for

the main actor, minimum contrast level, minimum 1 sec-

ond of clip length, and acceptable compression artifacts.

The following sources were used: digitized movies, public

databases such as the Prelinger archive, other videos avail-

able on the internet, and YouTube and Google videos. Thus,

a first set of annotations was generated with over 60 action

categories. It was reduced to 51 categories by retaining only

those with at least 101 clips.

The actions categories can be grouped in five types:

1) General facial actions: smile, laugh, chew, talk; 2) Fa-

cial actions with object manipulation: smoke, eat, drink;

3) General body movements: cartwheel, clap hands, climb,

climb stairs, dive, fall on the floor, backhand flip, hand-

stand, jump, pull up, push up, run, sit down, sit up, som-

ersault, stand up, turn, walk, wave; 4) Body movements

with object interaction: brush hair, catch, draw sword, drib-

ble, golf, hit something, kick ball, pick, pour, push some-

thing, ride bike, ride horse, shoot ball, shoot bow, shoot

gun, swing baseball bat, sword exercise, throw; 5) Body

movements for human interaction: fencing, hug, kick some-

one, kiss, punch, shake hands, sword fight.

2.2. Annotations

In addition to action category labels, each clip was an-

notated with meta information to allow for a more precise

evaluation of the limitation of current computer vision sys-

tems. The meta information contains the following fields:

visible body parts / occlusions indicating if the head, upper

body, lower body or the full body is visible, camera motion

indicating whether the camera is moving or static, camera

view point relative to the actor (labeled front, back, left or

right) , and the number of people involved in the action (one,

two or multiple people).

The clips were also annotated according to their video

quality. We consider three levels: 1) High – detailed visual

elements such as the fingers and eyes of the main actor iden-

tifiable through most of the clip, limited motion blur and

limited compression artifacts; 2) Medium – large body parts

like the upper and lower arms and legs identifiable through

most of the clip; 3) Low – large body parts not identifiable

due in part to the presence of motion blur and compression

artifacts. The distribution of the meta tags for the entire

dataset is shown in Figure 2.

2.3. Training and testing set generation

For evaluation purposes, three distinct training and test-

ing splits were generated from the database. The sets were

built to ensure that clips from the same video were not used

for both training and testing and that the relative proportions

of meta tags such as camera position, video quality, motion,

etc. were evenly distributed across the training and testing

sets. For each action category in our dataset we selected

sets of 70 training and 30 testing clips so that they fulfill the

70/30 balance for each meta tag with the added constraint

that clips in the training and testing set could not come from

the same video file.

To this end, we selected the three best results by the de-

fined criteria from a very large number of randomly gener-

ated splits. To ensure that selected splits are not correlated

with each other, we implemented a greedy approach by first

picking the split with the most balanced meta tag distribu-

tion and subsequently choosing the second and third split

which are least correlated with the previous splits. The cor-

relation was measured by normalized Hamming distance.

Because of the hard constraint of not using clips from the

same source for training and testing, it is not always pos-

sible to find an optimal split that has perfect meta tag dis-

tribution, but we found that in practice the simple approach

described above provides reasonable splits.

2.4. Video normalization

The original video sources used to extract the action clips

vary in size and frame rate. To ensure consistency across

the database, the height of all the frames was scaled to 240

pixels. Te width was scaled accordingly to maintain the

original aspect ratio. The frame rate was converted to 30

fps for all the clips. All the clips were compressed using the

DivX 5.0 codec with the ffmpeg video library.

2.5. Video stabilization

A major challenge accompanying the use of video clips

extracted from real-world videos is the potential presence

of significant camera motion, which is the case for approxi-

mately 2/3 of the clips in our database as shown in Figure 2.

As camera motion is assumed to interfere with the local mo-

tion computation and should be corrected, it follows that

video stabilization is a key pre-processing step. To remove

the camera motion, we used standard image stitching tech-

niques to align frames of a clip.



Figure 3. Examples of a clip stabilized over 50 frames showing

from the top to the bottom, the 1st, 30th and 50th frame of the

original (left column) and stabilized clip (right column).

Table 2. The recognition accuracy of low-level color/gist cues for

different action datasets.
Dataset N Color+

Gray+

PCA

Percent

drop

Gist Percent

drop

HOG/

HOF

Hollywood 8 26.9% 16.7% 27.4% 15.2% 32.3%

UCF Sports 9 47.7% 18.6% 60.0% -2.4% 58.6%

UCF YouTube 11 38.3% 35.0% 53.8% 8.7% 58.9%

Hollywood2 12 16.2% 68.7% 21.8% 57.8% 51.7%

UCF50 50 41.3% 13.8% 38.8% 19.0% 47.9%

HMDB51 51 8.8% 56.4% 13.4% 33.7% 20.2%

To do this, a background plane is estimated by detecting

and matching salient features in two adjacent frames. Cor-

responding features are computed using a distance measure

that includes both the absolute pixel differences and the Eu-

ler distance of the detected points. Points with a minimum

distance are then matched and the RANSAC algorithm is

used to estimate the geometric transformation between all

neighboring frames. This is done independently for every

pair of frames. Using this estimated transformation, all

frames of the clip are warped and combined to achieve a

stabilized clip. We visually inspected a large number of the

resulting stabilized clips and found that the image stitch-

ing techniques work surprisingly well. Figure 3 shows an

example. For the evaluation of the action recognition sys-

tems, the performance was reported for the original clips as

well as the stabilized clips.

3. Comparison with other action datasets

To compare the proposed HMDB51 with existing real-

world action datasets such as Hollywood, Hollywood2,

UCF Sports, and the UCF YouTube dataset, we evaluate

the discriminative power of various low-level features. For

an ideal unbiased action dataset, low-level features such as

color should not be predictive of the high-level action cate-

gory. For low-level features we considered the mean color

in the HSV color space computed for each frame over a

12× 16 spatial grid as well as the combination of color and

gray value and the use of PCA to reduce the feature dimen-

sion of those descriptors. Here we report the results “color

+ gray + PCA”.

We further considered the low-level global scene infor-

mation (gist) [15] computed for three frames of a clip. Gist

is a coarse orientation-based representation of an image that

has been shown to capture well the contextual information

in a scene and shown to perform quite well on a variety of

recognition tasks, see [15]. We used the source code pro-

vided by the authors.

Lastly, we compare these low-level cues with a common

mid-level spatio-temporal bag-of-words cue (HOG/HOF)

by computing spatial temporal interest points for all clips.

A standard bag of words approach with 2,000 , 3,000 , 4,000

, and 5,000 visual words was used for classification and the

best result is reported. For evaluation we used the testing

and training splits that came with the datasets, otherwise a

3- or 5-fold cross validation was used for datasets without

specified splits. Table 2 shows the results sorted by the num-

ber of classes (N) in each dataset. Percent drop is computed

for the performance down from HOG/HOF features to each

of the two types of low-level features. A small percentage

drop means that the low-level features perform as well as

the mid-level motion features.

Results obtained by classifying these very simple fea-

tures show that the UCF Sports dataset can be classified by

scene descriptors rather than by action descriptors as gist

is more predictive than mid-level spatio-temporal features.

We conjecture that gist features are predictive of the sports

actions (i.e., UCF Sports) because most sports are location-

specific. For example, ball games usually occur on grass

field, swimming is always in water, and most skiing hap-

pens on snow. The results also reveal that low-level features

are fairly predictive as compared to mid-level features for

the UCF YouTube and UCF50 dataset. This might be due

to low-level biases for videos on YouTube, e.g., preferred

vantage points and camera positions for amateur directors.

For the dataset collected from general movies or Hollywood

movies, the performance of various low-level cues is on av-

erage lower than that of the mid-level spatio-temporal fea-

tures. This implies that the datasets collected from YouTube

tend to be biased and capture only a small range of colors

and scenes across action categories compared to those col-

lected from movies. The similar performance using low-

level and mid-level features for the Hollywood dataset is

likely due to the low number of source movies (12). Clips

extracted from the same movie usually have similar scenes.



4. Benchmark systems

To evaluate the discriminability of our 51 action cate-

gories we focus on the class of algorithms for action recog-

nition based on the extraction of local space-time informa-

tion from videos, which have become the dominant trend in

the past five years [24]. Various local space-time based ap-

proaches mainly differ in the type of detectors (e.g., the im-

plementation of the spatio-temporal filters), the feature de-

scriptors, and the number of spatio-temporal points sampled

(dense vs. sparse). Wang et al. have grouped these detectors

and descriptors into six types and evaluated their perfor-

mance on the KTH, UCF Sports and Hollywood2 datasets

in a common experimental setup [24].

The results have shown that Laptev’s combination of a

histogram of oriented gradient (HOG) and histogram of ori-

ented flow (HOF) descriptors performed best for the Hol-

lywood2 and UCF Sports. As HMDB51 contains movies

and YouTube videos, these datasets are considered the most

similar in terms of video sources. Therefore, we selected

the algorithm by Latptev and colleagues [11] as one of our

benchmarks. To expand beyond [24], we chose for our sec-

ond benchmark approaches developed by our group [21, 8].

It uses a hierarchical architecture modeled after the ventral

and dorsal streams of the primate visual cortex for the task

of object and action recognition, respectively.

In the following we provide a detailed comparison be-

tween these algorithms, looking in particular at the robust-

ness of the two approaches with respect to various nuisance

factors including the quality of the video and the camera

motion, as well as changes in the position, scale and view-

point of the main actors.

4.1. HOG/HOF features

The combination of HOG, which has been used for the

recognition of objects and scenes, and HOF, a 3D flow-

based version of HOG, has been shown to achieve state-

of-the-art performance on several commonly used action

datasets [11, 24]. We used the binaries provided by [11] to

extract features using the Harris3D as feature detector and

the HOG/HOF feature descriptors. For every clip a set of

3D Harris corners is detected and a local descriptor is com-

puted as a concatenation of the HOG and HOF around the

corner.

For classification, we implemented a bag-of-words sys-

tem as described in [11]. To evaluate the best code book

size, we sampled 100,000 space-time interest-point descrip-

tors from the training set and applied the k-means clustering

to obtain a set of k = [2, 000, 4, 000, 6, 000, 8, 000] visual

words. For every clip, each of the local point descriptors is

matched to the nearest prototype returned by k-means clus-

tering and a global feature descriptor is obtained by comput-

ing a histogram over the index of the matched codebook en-

tries. This results in a k-dimensional feature vector where k

is the number of visual words learned from k-means. These

clip descriptors are then used to train and test a support vec-

tor machine (SVM) in the classification stage.

We used a SVM with an RBF kernel K(u, v) =
exp(−γ ∗ |u − v|2)). The parameters of the RBF kernel

(the cost term C and kernel bandwidth γ) were optimized

using a greedy search with a 5-fold cross-validation on the

training set.

The best result for the original clips was reached for

k = 8, 000 whereas the best result for the stabilized clips

was for at k = 2000 (see Section 5.1). To validate our re-

implementation of Laptev’s system, we evaluated the per-

formance of the system on the KTH dataset and were able

to reproduce the results for the HOG (81.4%) and HOF de-

scriptors (90.7%) as reported in [24].

4.2. C2 features

Two types of C2 features have been described in the lit-

erature. One is from a model that was designed to mimic the

hierarchical organization and functions of the ventral stream

of the visual cortex [21]. The ventral stream is believed to

be critically involved in the processing of shape informa-

tion and the scale-and-position-invariant object recognition.

The model starts with a pyramid of Gabor filters (S1 units at

different orientations and scales), which correspond simple

cells in the primary visual cortex. The next layer (C1) mod-

els the complex cells in the primary visual cortex by pooling

together the activity of S1 units in a local spatial region and

across scales to build some tolerance to 2D transformations

(translation and size) of inputs.

The third layer (S2) responses are computed by matching

the C1 inputs with a dictionary of n prototypes learned from

a set of training images. As opposed to the bag-of-words

approach that uses vector quantization and summarizes the

indices of the matched codebook entries, we retain the sim-

ilarity (ranging from 0 to 1) with each of the n prototypes.

In the top layer of the feature hierarchy, a n-dimensional

C2 vector is obtained for each image by pooling the max-

imum of S2 responses across scales and positions for each

of the n prototypes. The C2 features have been shown to

perform comparably to state-of-the-art algorithms applied

to the problem of object recognition [21]. They have also

been shown to account well for the properties of cells in

the inferotemporal cortex (IT), which is the highest purely

visual area in the primate brain.

Based on the work described above, Jhuang et al. [8]

proposed a model of the dorsal stream of the visual cor-

tex. The dorsal stream is thought to be critically involved

in the processing of motion information and the perception

of motion. The model starts with spatio-temporal Gabor

filters that mimic the direction-sensitive simple cells in the

primary visual cortex.



The dorsal stream model is a 3D (space-time) extension

of the ventral stream model. The S1 units in the ventral

stream model respond best to orientation in space, whereas

S1 units in the dorsal stream model have non-separable

spatio-temporal receptive fields and respond best to direc-

tions of motion, which could be seen as orientation in space-

time. It has been suggested that motion-direction sensitive

cells and shape-orientation cells perform the initial filtering

for two parallel channels of feature processing, one for mo-

tion in the dorsal stream, and another for shape in the ventral

stream.

Beyond the S1 layer, the dorsal steam model follows the

same architecture as the ventral stream model. It contains

the C1, S2, C2 layers, which perform similar operations as

its ventral stream counterpart. The S2 units in the dorsal

stream model are now tuned to optic-flow patterns that cor-

respond to combinations of directions of motion whereas

the ventral S2 units are tuned to shape patterns correspond-

ing to combinations of orientations. It has been suggested

that both the shape features processed in the ventral stream

and the motion features processed in the dorsal stream con-

tribute to the recognition of actions. In this work, we con-

sider their combination by computing both types of C2 fea-

tures independently and then concatenating them.

5. Evaluation

5.1. Overall recognition performance

We first evaluated the overall performance of both sys-

tems on the proposed HMDB51 averaged over three splits

(see Section 2.3). Both systems exhibited comparable levels

of performance slightly over 20% (chance level 2%). The

confusion matrix for both systems on the original clips is

shown in Figure 4. Errors seem to be randomly distributed

across category labels with no apparent trends. The most

surprising result is that the performance of the two systems

improved only marginally after stabilization for camera mo-

tion (Table 3).

As recognition results for both systems appear rela-

tively low compared to previously published results on other

datasets [8, 11, 24], we conducted a simple experiment to

find out whether this decrease in performance simply re-

sults from an increase in the number of object categories

and a corresponding decrease in chance level recognition or

an actual increase in the complexity of the dataset due for

instance to the presence of complex background clutter and

more intra-class variations. We selected 10 common ac-

tions in the HMDB51 that were similar to action categories

in the UCF50 and compared the recognition performance

of the HOG/HOF on video clips from the two datasets.

The following is a list of matched categories: basketball /

shoot ball, biking / ride bike, diving / dive, fencing / stab,

golf swing / golf, horse riding / ride horse, pull ups / pull-

HOG/HOF − Original Clips
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Figure 4. Confusion Matrix for HOG/HOF and the C2 features on

the set of original (not stabilized) clips.

up, push-ups / push-up, rock climbing indoor / climb as well

as walking with dog / walk.

Overall, we found a mild drop in performance from the

UCF50 with 66.3% accuracy down to 54.3% for similar cat-

egories on the HMDB51 (chance level 10% for both sets).

These results are also comparable to the performance of the

same HOG/HOF system on similar sized datasets of dif-

ferent actions with 51.7% over 12 categories of the Holly-

wood2 dataset and 58.9% over 11 categories of the UCF

YouTube dataset as shown in Table 2. These results suggest

that the relatively low performance of the benchmarks on

the proposed HMDB51 is most likely the consequence of

the increase in the number of action categories compared to

older datasets.



Table 3. Performance of the benchmark systems on the HMDB51.
System Original clips Stabilized clips

HOG/HOF 20.44% 21.96%

C2 22.83% 23.18%

Table 4. Mean recognition performance as a function of camera

motion and clip quality.
Camera motion Quality

yes no low med high

HOG/HOF 19.84% 19.99% 17.18% 18.68% 27.90%

C2 25.20% 19.13% 17.54% 23.10% 28.62%

5.2. Robustness of the benchmarks

In order to assess the relative strengths and weaknesses

of the two benchmark systems on the HMDB51 in the

context of various nuisance factors, we broke down their

performance in terms of 1) visible body parts or equiv-

alently the presence/absence of occlusions, 2) the pres-

ence/absence of camera motion, 3) viewpoint/ camera po-

sition, and 4) the quality of the video clips. We found that

the presence/absence of occlusions and the camera position

did not seem to influence performance. A major factor for

the performance of the two systems was the clip quality.

As shown on Table 4, from high to low quality videos, the

two systems registered a drop in performance of about 10%

(from 27.90%/28.62% for the HOG+HOF/C2 features for

the high quality clips down to 17.18%/17.54% for the low

quality clips).

A factor that affected the two systems differently was

camera motion: Whereas the HOG/HOF performance was

stable with the presence or absence of camera motion, sur-

prisingly, the performance of the C2 features actually im-

proved with the presence of camera motion. We suspect

that camera motion might actually increase the response of

the low-level S1 motion detectors. An alternative explana-

tion is that the camera motion by itself might be correlated

with the action category. To evaluate whether camera mo-

tion alone can be predictive of the action category, we tried

to classify the mean parameters of the estimated frame-by-

frame motion returned by the video stabilization algorithm.

The result of 5.29% recognition shows that at least cam-

era motion alone does not provide significant information

in this case.

To further investigate how various nuisance factors may

affect the recognition performance of the two systems, we

conducted a logistic regression analysis to predict whether

each of the two systems will be correct vs. incorrect for spe-

cific conditions. The logistic regression model was built as

follows: the correctness of the predicted label was used as

binary dependent variable, the camera viewpoints were split

into one group for front and back views (because of simi-

lar appearances; front, back =0) and another group for side

views (left, right =1). The occlusion condition was split

into full body view (=0) and occluded views (head, upper

or lower body only =1). The video quality label was con-

Table 5. Results of the logistic regression analysis on the key fac-

tors influencing the performance of the two systems.

HOG/HOF

Coefficient Coef. est. β p odds ratio

Intercept -1.60 0.000 0.20

Occluders 0.07 0.427 1.06

Camera motion -0.12 0.132 0.88

View point 0.09 0.267 1.09

Med. quality 0.11 0.254 1.12

High quality 0.65 0.000 1.91

C2

Coefficient Coef. est. β p odds ratio

Intercept -1.52 0.000 0.22

Occluders -0.22 0.007 0.81

Camera motion -0.43 0.000 0.65

View point 0.19 0.009 1.21

Med. quality 0.47 0.000 1.60

High quality 0.97 0.000 2.65

verted into binary variables whereas the labels 10, 01 and

00 corresponded to a high, medium, and low quality video

respectively.

The estimated β coefficients for the two systems are

shown in Table 5. The largest factor influencing perfor-

mance for both systems remained the quality of the video

clips. On average the systems were predicted to be nearly

twice as likely to be correct on high vs. medium quality

videos. This is the strongest influence factor by far. How-

ever the regression analysis also confirmed the assumption

that camera motion improves classification performance.

Consistent with the previous analysis based on error rates,

this trend is only significant for the C2 features. The addi-

tional factors, occlusion and camera viewpoint, did not have

a significant influence on the results of the HOG/HOF or C2

approach.

5.3. Shape vs. motion information

The role of shape vs. motion cues for the recognition of

biological motion has been the subject of an intense debate.

Computer vision could provide critical insight to this ques-

tion as various approaches have been proposed that rely not

just on motion cues like the two systems we have tested but

also on single-frame shape-based cues, such as posture [18]

and shape [19], and contextual information [13, 28].

We here study the relative contributions of shape vs. mo-

tion cues for the recognition of actions on the HMDB51.

We compared the HOG/HOF descriptor with the recogni-

tion of a shape-only HOG descriptor and a motion-only

HOF descriptor. We also compared the performance of the

previously mentioned motion-based C2 to those of shape-

based C2. Table 6 shows the performance of the various

descriptors.

In general we find that shape cues alone perform much

worse than motion cues alone, and their combination tends

to improve recognition performance very moderately. This

combination seems to affect the recognition of the original

clips rather than the recognition of the stabilized clips. An



Table 6. Average performance for shape vs. motion cues.
HOG/HOF HOGHOF HOG HOF

Original 20.44% 15.01% 17.95%

Stabilized 21.96% 15.47% 22.48%

C2 Motion+Shape Shape Motion

Original 22.83% 13.40% 21.96%

Stabilized 23.18% 13.44% 22.73%

earlier study [19] suggested that “local shape and flow for

a single frame is enough to recognize actions”. Our results

suggest that the statement might be true for simple actions

as is the case for the KTH dataset but motion cues do seem

to be more powerful than shape cues for the recognition of

complex actions like the ones in the HMDB51.

6. Conclusion

We described an effort to advance the field of action

recognition with the design of what is, to our knowledge,

currently the largest action dataset. With 51 action cat-

egories and just under 7,000 video clips, the proposed

HMDB51 is still far from capturing the richness and the full

complexity of video clips commonly found in the movies or

online videos. However given the level of performance of

representative state-of-the-art computer vision algorithms

with accuracy about 23%, this dataset is arguably a good

place to start (performance on the CalTech-101 database

for object recognition started around 16% [6]). Further-

more our exhaustive evaluation of two state-of-the-art sys-

tems suggest that performance is not significantly affected

over a range of factors such as camera position and motion

as well as occlusions. This suggests that current methods

are fairly robust with respect to these low-level video degra-

dations but remain limited in their representative power in

order to capture the complexity of human actions.
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