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Abstract
We develop some new error bounds for learning algorithms induced by regularization

methods in the regression setting. The “hardness” of the problem is characterized in terms
of the parameters r and s, the first related to the “complexity” of the target function,
the second connected to the effective dimension of the marginal probability measure over
the input space. We show, extending previous results, that by a suitable choice of the
regularization parameter as a function of the number of the available examples, it is
possible attain the optimal minimax rates of convergence for the expected squared loss of
the estimators, over the family of priors fulfilling the constraint r + s ≥ 1

2
. The setting

considers both labelled and unlabelled examples, the latter being crucial for the optimality
results on the priors in the range r < 1

2
.
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1. Introduction

We consider the setting of semi-supervised statistical learning. We assume Y ⊂
[−M, M ] and the supervised part of the training set equal to

z = (z1, . . . , zm),

with zi = (xi, yi) drawn i.i.d. according to the probability measure ρ over Z = X × Y .
Moreover consider the unsupervised part of the training set (xu

m+1, . . . , x
u
m̃), with xu

i drawn
i.i.d. according to the marginal probability measure over X, ρX . For sake of brevity we
will also introduce the complete training set

z̃ = (z̃1, . . . , z̃m̃),

with z̃i = (x̃i, ỹi), where we introduced the compact notations x̃i and ỹi, defined by

x̃i =

�
xi if 1 ≤ i ≤ m,
xu

i if m < i ≤ m̃,

and

ỹi =

�
m̃
m

yi if 1 ≤ i ≤ m,
0 if m < i ≤ m̃.

It is clear that, in the supervised setting, the semi-supervised part of the training set
is missing, whence m̃ = m and z̃ = z.

In the following we will study the generalization properties of a class of estimators fz̃,λ

belonging to the hypothesis space H: the RKHS of functions on X induced by the bounded
Mercer kernel K (in the following κ = supx∈X K(x, x)). The learning algorithms that we
consider, have the general form

fz̃,λ = Gλ(Tx̃) gz,(1)

where Tx̃ ∈ L(H) is given by,

Tx̃f =
1

m̃

m̃X
i=1

Kx̃i 〈Kx̃i , f〉H ,

gz ∈ H is given by,

gz =
1

m̃

m̃X
i=1

Kx̃i ỹi =
1

m

mX
i=1

Kxiyi,

and the regularization parameter λ lays in the range (0, κ]. We will often used the shortcut

notation λ̇ = λ
κ
.

The functions Gλ : [0, κ] → R, which select the regularization method, will be charac-
terized in terms of the constants A and Br in [0, +∞], defined as follows

A = sup
λ∈(0,κ]

sup
σ∈[0,κ]

|(σ + λ)Gλ(σ)|(2)

Br = sup
t∈[0,r]

sup
λ∈(0,κ]

sup
σ∈[0,κ]

|1−Gλ(σ)σ|σtλ−t, r > 0.(3)

Finiteness of A and Br (with r over a suitable range) are standard in the literature
of ill-posed inverse problems (see for reference [12]). Regularization methods have been
recently studied in the context of learning theory in [13, 9, 8, 10, 1].

The main results of the paper, Theorems 1 and 2, describe the convergence rates of
fz̃,λ to the target function fH. Here, the target function is the “best” function which can
be arbitrarily well approximated by elements of our hypothesis space H. More formally,
fH is the projection of the regression function fρ(x) =

R
Y

ydρ|x(y) onto the closure of H
in L2(X, ρX).

The convergence rates in Theorems 1 and 2, will be described in terms of the constants
Cr and Ds in [0, +∞] characterizing the probability measure ρ. These constants can be
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described in terms of the integral operator LK : L2(X, ρX) → L2(X, ρX) of kernel K.
Note that the same integral operator is denoted by T , when seen as a bounded operator
from H to H.

The constants Cr characterize the conditional distributions ρ|x through fH, they are
defined as follows

Cr =

�
κr


L−r

K fH




ρ
if fH ∈ Im Lr

K

+∞ if fH 6∈ Im Lr
K

, r > 0.(4)

Finiteness of Cr is a common source condition in the inverse problems literature (see
[12] for reference). This type of condition has been introduced in the statistical learning
literature in [7, 18, 3, 17, 4].

The constants Ds characterize the marginal distribution ρX through the effective di-
mension N (λ) = Tr

�
T (T + λ)−1

�
, they are defined as follows

Ds = 1 ∨ sup
λ̇∈(0,1]

q
N (λ)λ̇s, s ∈ (0, 1].(5)

Finiteness of Ds was implicitly assumed in [3, 4].

The paper is organized as follows. In Section 2 we focus on the RLS estimators f ls
z̃,λ,

defined by the optimization problem

f ls
z̃,λ = argmin

f∈H

1

m̃

m̃X
i=1

(f(x̃i)− ỹi)
2 + λ ‖f‖2K ,

and corresponding to the choice Gλ(σ) = (σ + λ)−1 (see for example [5, 7, 18]). The
main result of this Section, Theorem 1, extends the convergence analysis performed in
[3, 4] from the range r ≥ 1

2
to arbitrary r > 0 and s ≥ 1

2
− r. Corollary 1 gives optimal

s-independent rates for r > 0.
The analysis of the RLS algorithm is a useful preliminary step for the study of general

regularization methods, which is performed in Section 3. The aim of this Section is
develop a s-dependent analysis in the case r > 0 for general regularization methods Gλ.
In Theorem 2 we extend the results given in Theorem 1 to general regularization methods.
In fact, in Theorem 2 we obtain optimal minimax rates of convergence (see [3, 4]) for the
involved problems, under the assumption that r + s ≥ 1

2
. Finally, Corollary 2 extends

Corollary 1 to general Gλ.
In Sections 4 and 5 we give the proofs of the results stated in the previous Sections.

2. Risk bounds for RLS.

We state our main result concerning the convergence of f ls
z̃,λ to fH. The function |x|+,

appearing in the text of Theorem 1, is the “positive part” of x, that is x+|x|
2

.

Theorem 1. Let r and s be two reals in the interval (0, 1], fulfilling the constraint r+s ≥
1
2
.
Furthermore, let m and λ satisfy the constraints λ ≤ ‖T‖ and

λ̇ =

�
4Ds log 6

δ√
m

� 2
2r+s

,(6)

for δ ∈ (0, 1). Finally, assume m̃ ≥ mλ̇−|1−2r|+ . Then, with probability greater than 1−δ,
it holds 


f ls

z̃,λ − fH





ρ
≤ 4(M + Cr)

�
4Ds log 6

δ√
m

� 2r
2r+s

.
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Some comments are in order.
First, while eq. (6) expresses λ in terms of m and δ, it is straightforward verifying that

the condition λ ≤ ‖T‖ is satisfied for

√
m ≥ 4Ds

�
κ

‖T‖
�r+ s

2

log
6

δ
.

Second, the asymptotic rate of convergence O
�
m− r

2r+s

�
of


f ls

z̃,λ − fH




ρ
, is optimal

in the minimax sense of [11, 4]. Indeed, in Th.2 of [4], it was showed that this asymptotic
order is optimal over the class of probability measures ρ, such that fH ∈ Im Lr

K , and the

eigenvalues of T , λi, have asymptotic order O
�
i−

1
s

�
. In fact, the condition on fH implies

the finiteness of Cr and the condition on the spectrum of T implies the finiteness of Ds

(see Prop.3 in [4]).
Upper bounds of the type given in [17] or [3] (and stated in [6, 4], under a weaker noise

condition, and in the more general framework of vector-valued functions) can be obtained
as a corollary of Theorem 1, considering the case r ≥ 1

2
.

However, the advantage of using extra unlabelled data, is evident when r < 1
2
. In this

case, the unlabelled examples (enforcing the assumption m̃ ≥ mλ̇2r−1) allow (if s ≥ 1
2
−r)

again the rate of convergence O
�
m− r

2r+s

�
, over classes of measures ρ defined in terms of

finiteness of the constants Cr and Ds. It is not known to the author whether the same
rate of convergence can be achieved by the RLS estimator, for s < 1

2
− r.

A simple corollary of Theorem 1, encompassing all the values of r in (0, 1], can be
obtained observing that D1 = 1, for every kernel K and marginal distribution ρX (see
Prop. 2).

Corollary 1. Let m̃ ≥ mλ̇−|1−2r|+ hold with r in the interval (0, 1]. If λ satisfies the
constraints λ ≤ ‖T‖ and

λ̇ =

�
4 log 6

δ√
m

� 2
2r+1

,

for δ ∈ (0, 1), then, with probability greater than 1− δ, it holds


f ls
z̃,λ − fH





ρ
≤ 4(M + Cr)

�
4 log 6

δ√
m

� 2r
2r+1

.

3. Risk bounds for general regularization methods.

In this Section we state a result which generalizes Theorem 1 from RLS to general
regularization algorithms of type described by equation (1). In this general framework

we need (λ̇−|2−2r−s|+ − 1)m unlabelled examples in order to get minimax optimal rates,

slightly more than the (λ̇−|1−2r|+ − 1)m required in Theorem 1 for the RLS estimator.
We adopt the same notations and definitions introduced in the previous section.

Theorem 2. Let r > 0 and s ∈ (0, 1] fulfill the constraint r + s ≥ 1
2
. Furthermore, let m

and λ satisfy the constraints λ ≤ ‖T‖ and

λ̇ =

�
4Ds log 6

δ√
m

� 2
2r+s

,(7)

for δ ∈ (0, 1
3
). Finally, assume m̃ ≥ 4∨mλ̇−|2−2r−s|+ . Then, with probability greater than

1− 3δ, it holds

‖fz̃,λ − fH‖ρ ≤ Er

�
4Ds log 6

δ√
m

� 2r
2r+s

,
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where

Er = Cr (30A + 2(3 + r)Br + 1) + 9MA.(8)

The proof of the above Theorem is postponed to Section 5.
For the particular case Gλ(σ) = (σ + λ)−1, fz̃,λ = f ls

z̃,λ and the result above can be
compared with Theorem 1. In this case, it is easy to verify that A = 1, Br ≤ 1 for r ∈ [0, 1]
and Cr = +∞ for r > 1. The maximal value of r for which Cr < +∞ is usually denoted
as the qualification of the regularization method.

For a description of the properties of common regularization methods, in the inverse
problems literature we refer to [12]. In the context of learning theory a review of these
techniques can be found in [10] and [1]. In particular in [10] some convergence results of
algorithms induced by Lipschitz continuous Gλ can be found.

A simple corollary of Theorem 2 which generalizes Corollary 1 to arbitrary regulariza-
tion methods, can be obtained observing that D1 = 1, for every kernel K and marginal
distribution ρX (see Prop. 2).

Corollary 2. Let m̃ ≥ 4 ∨ mλ̇−|1−2r|+ hold with r > 0. If λ satisfies the constraints
λ ≤ ‖T‖ and

λ̇ =

�
4 log 6

δ√
m

� 2
2r+1

,

for some δ ∈ (0, 1
3
), then, with probability greater than 1− 3δ, it holds


f ls

z̃,λ − fH





ρ
≤ Er

�
4 log 6

δ√
m

� 2r
2r+1

,

with Er defined by eq. (8).

4. Proof of Theorem 1

In this section we give the proof of Theorem 1. First we need some preliminary propo-
sitions.

Proposition 1. Assume λ ≤ ‖T‖ and

λm̃ ≥ 16κN (λ) log2 6

δ
,(9)

for some δ ∈ (0, 1). Then, with probability greater than 1− δ, it holds


(T + λ)
1
2 (f ls

z̃,λ − f ls
λ )




H
≤ 8

�
M +

r
κ

m

m̃




f ls
λ





H

� 
2

m

r
κ

λ
+

r
N (λ)

m

!
log

6

δ
,

where

f ls
λ = (T + λ)−1LKfH.

Proof. Assuming

S1 :=



(T + λ)−

1
2 (T − Tx̃)(T + λ)−

1
2





HS

< 1,(10)

by simple algebraic computations we obtain
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f ls
z̃,λ − f ls

λ = (Tx̃ + λ)−1gz − (T + λ)−1g

= (Tx̃ + λ)−1 �(gz − g) + (T − Tx̃)(T + λ)−1g
	

= (Tx̃ + λ)−1(T + λ)
1
2

n
(T + λ)−

1
2 (gz − g) + (T + λ)−

1
2 (T − Tx̃)(T + λ)−1g

o
= (T + λ)−

1
2

n
Id− (T + λ)−

1
2 (T − Tx̃)(T + λ)−

1
2

o−1n
(T + λ)−

1
2 (gz − g) + (T + λ)−

1
2 (T − Tx̃)fλ

o
.

Therefore we get 


(T + λ)
1
2 (f ls

z̃,λ − f ls
λ )




H

≤ S2 + S3

1− S1
,

where

S2 :=



(T + λ)−

1
2 (gz − g)





H

,

S3 :=



(T + λ)−

1
2 (T − Tx̃)fλ





H

.

Now we want to estimate the quantities S1, S2 and S3 using Prop. 4. In fact, choosing
the correct vector-valued random variables ξ1, ξ2 and ξ3, the following common represen-
tation holds,

Sh =






 1

mh

mhX
i=1

ξh(ωi)− E[ξh]






 , h = 1, 2, 3.

Indeed, in order to let the equality above hold, ξ1 : X → LHS(H) is defined by

ξ1(x)[·] = (T + λ)−
1
2 Kx 〈Kx, ·〉H (T + λ)−

1
2 ,

and m1 = m̃.
Moreover, ξ2 : Z → H is defined by

ξ(x, y) = (T + λ)−
1
2 Kxy,

with m2 = m.
And finally, ξ3 : X → H is defined by

ξ(x) = (T + λ)−
1
2 Kxf ls

λ (x),

with m3 = m̃.
Hence, applying three times Prop. 4, we can write

P
�
Sh ≤ 2

�
Hh

mh
+

σh√
mh

�
log

6

δ

�
≥ 1− δ

3
, h = 1, 2, 3,

where, as it can be straightforwardly verified, the constants Hh and σh are given by the
expressions

H1 = 2κ
λ
, σ2

1 =
κ

λ
N (λ),

H2 = 2M
p

κ
λ
, σ2

2 = M2N (λ),

H3 = 2


f ls

λ




H

κ√
λ
, σ2

3 = κ



f ls

λ





H
N (λ).
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Now, recalling the assumptions on λ and m̃, with probability greater than 1− δ/3, we
get

S1 ≤ 2

 
2κ

m̃λ
+

r
N (λ)κ

m̃λ

!
log

6

δ�
N (λ) ≥ ‖T‖

‖T‖+ λ
≥ 1

2

�
≤ 4

κN (λ) log2 6
δ

λm̃
+

s
κN (λ) log2 6

δ

λm̃

(eq. (9)) ≤ 1

4
+

1

2
=

3

4
.

Hence, since m̃ ≥ m, with probability greater than 1− δ,


(T + λ)
1
2 (f ls

z̃,λ − f ls
λ )




H

≤ 4(S2 + S3)

≤ 8

�
M +

r
κ

m

m̃




f ls
λ





H

� 
2

m

r
κ

λ
+

r
N (λ)

m

!
log

6

δ
.

¤

Proposition 2. For every probability measure ρX and λ > 0, it holds

‖T‖ ≤ κ,

and

λN (λ) ≤ κ.

Proof. First, observe that

Tr[T ] =

Z
X

Tr[Kx 〈Kx, ·〉H]dρX(x) =

Z
X

K(x, x)dρX(x) ≤ sup
x∈X

K(x, x) ≤ κ.

Therefore, since T is a positive self-adjoint operator, the first inequality follows observ-
ing that

‖T‖ ≤ Tr[T ] ≤ κ.

The second inequality can be proved observing that, since ψλ(σ2) := λσ2

σ2+λ
≤ σ2, it

holds

λN (λ) = Tr[ψλ(T )] ≤ Tr[T ] ≤ κ.

¤

Proposition 3. Let fH ∈ Im Lr
K for some r > 0. Then, the following estimates hold,


f ls

λ − fH





ρ
≤ λr



L−r
K fH




ρ
, if r ≤ 1


f ls

λ





H

≤
(

λ−
1
2+r



L−r
K fH




ρ

if r ≤ 1
2
,

κ−
1
2+r



L−r
K fH




ρ

if r > 1
2
.

Proof. The first estimate is standard in the theory of inverse problems, see, for example,
[14, 12] or [18].
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Regarding the second estimate, if r ≤ 1
2
, since T is positive, we can write,


f ls

λ





H

≤


(T + λ)−1LKfH




H

≤




(T + λ)−

1
2+r �T (T + λ)−1� 1

2+r
L

1
2−r

K fH






H

≤


(T + λ)−1



 1
2−r 

L−r

K fH




ρ
≤ λ−

1
2+r



L−r
K fH




ρ
.

On the contrary, if r > 1
2
, since by Prop. 2 ‖T‖ ≤ κ, we obtain,


f ls

λ





H

≤


(T + λ)−1LKfH




H

≤




T r− 1

2 T (T + λ)−1L
1
2−r

K fH






H

≤ ‖T‖r− 1
2


L−r

K fH




ρ
≤ κr− 1

2


L−r

K fH




ρ
.

¤

We also need the following probabilistic inequality based on a result of [16], see also
Th. 3.3.4 of [19]. We report it without proof.

Proposition 4. Let (Ω,F , P ) be a probability space and ξ be a random variable on Ω tak-
ing value in a real separable Hilbert space K. Assume that there are two positive constants
H and σ such that

‖ξ(ω)‖K ≤ H

2
a.s,

E[‖ξ‖2K] ≤ σ2,

then, for all m ∈ N and 0 < δ < 1,

(11) P(ω1,...,ωm)∼P m

"




 1

m

mX
i=1

ξ(ωi)− E[ξ]







K
≤ 2

�
H

m
+

σ√
m

�
log

2

δ

#
≥ 1− δ.

We are finally ready to prove Theorem 1.

Proof of Theorem 1. The Theorem is a corollary of Prop. 1. We proceed by steps.
First. Observe that, by Prop. 2, it holds

λ̇ ≤ ‖T‖
κ

≤ 1.

Second. Condition (9) holds. In fact, since λ̇ ≤ 1 and by the assumption m̃ ≥
mλ̇−|1−2r|+ , we get,

λ̇m̃ ≥ λ̇−|1−2r|++1m ≥ λ̇2rm.

Moreover, by eq. (6) and definition (5), we find

λ̇2rm = 16D2
s λ̇−s log2 6

δ
≥ 16N (λ) log2 6

δ
.

Third. Since λ̇ ≤ 1, recalling definition (4) and Prop. 3, for every r in (0, 1], we can
write, 


f ls

λ − fH





ρ
≤ λ̇rCr,

κ



f ls

λ




2

H
≤ λ̇−|1−2r|+C2

r .

Therefore we can apply Prop. 1, and using the two estimates above, the assumption
m̃ ≥ mλ̇−|1−2r|+ and the definition of Ds, to obtain the following bound,
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f ls
z̃,λ − fH





ρ

≤



f ls

z̃,λ − f ls
λ





ρ

+ ‖fλ − fH‖ρ�
‖f‖ρ = ‖

√
Tf‖H

�
≤




(T + λ)
1
2 (f ls

z̃,λ − f ls
λ )




H

+ ‖fλ − fH‖ρ

≤ 8(M + Cr)
1√
m

 
2p
mλ̇

+
Dsp
λ̇s

!
log

6

δ
+ λ̇rCr

(eq. (6)) = 2(M + Cr)λ̇
r

 
1 +

λ̇r+s− 1
2

2D2
s log 6

δ

!
+ λ̇rCr�

r + s ≥ 1

2

�
≤ (3(M + Cr) + Cr) λ̇r ≤ 4(M + Cr)λ̇

r.

Substituting the expression (6) for λ̇ in the inequality above, concludes the proof. ¤

5. Proof of Theorem 2

In this section we give the proof of Theorem 2. It is based on Proposition 1 which
establishes an upper bound on the sample error for the RLS algorithm in terms of the
constants Cr and Ds. When need some preliminary results. Proposition 5 shows properties
of the truncated functions f tr

λ , defined by equation (12), analogous to those given in

Proposition 3 for the functions f ls
λ .

Proposition 5. Let fH ∈ Im Lr
K for some r > 0. For any λ > 0 let the truncated

function f tr
λ be defined by

f tr
λ = PλfH(12)

where Pλ is the orthogonal projector in L2(X, ρX) defined by

Pλ = Θλ(LK),(13)

with

Θλ(σ) =

�
1 if σ ≥ λ,
0 if σ < λ.

(14)

Then, the following estimates hold,

f tr
λ − fH




ρ

≤ λr


L−r

K fH




ρ
,

f tr

λ




H ≤

(
λ−

1
2+r



L−r
K fH




ρ

if r ≤ 1
2
,

κ−
1
2+r



L−r
K fH




ρ

if r > 1
2
.

Proof. The first estimate follows simply observing that

f tr
λ − fH




ρ

=



P⊥λ fH





ρ

=



P⊥λ Lr

K






L−r
K fH




ρ
≤ λr



L−r
K fH




ρ
,

where we introduced the orthogonal projector P⊥λ = Id− Pλ.
Now let us consider the second estimate. Firstly observe that, since the compact

operators LK and T have a common eigensystem of functions on X, then Pλ can also be
seen as an orthogonal projector in H, and f tr

λ ∈ H. Hence we can write,

f tr
λ




H = ‖PλfH‖H ≤





L− 1
2

K PλfH






ρ

≤




L− 1

2+r

K Θλ(LK)





 

L−r
K fH




ρ
.
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The proof is concluded observing that by Prop. 2, ‖LK‖ = ‖T‖ ≤ κ, and that, for
every σ ∈ [0, κ], it holds

σ−
1
2+rΘλ(σ) ≤

(
λ−

1
2+r if r ≤ 1

2
,

κ−
1
2+r if r > 1

2
.

¤

Proposition 6 below estimates one of the terms appearing in the proof of Theorem 2
for any r > 0. The case r ≥ 1

2
had already been analyzed in the proof of Theorem 7 in

[1].

Proposition 6. Let r > 0 and define

γ = λ−1 ‖T − Tx̃‖ .(15)

Then, if λ ∈ (0, κ], it holds


√T (Gλ(Tx̃) Tx̃ − Id) f tr
λ





H
≤ BrCr(1 +

√
γ)(2 + rγλ̇

3
2−r + γη)λ̇r,

where

η = |r − 1

2
| − b|r − 1

2
|c.

Proof. The two inequalities (16) and (17) will be useful in the proof. The first follows
from Theorem 1 in [15],

‖T α − T α
x̃ ‖ ≤ ‖T − Tx̃‖α , α ∈ [0, 1](16)

where we adopted the convection 00 = 1. The second is a corollary of Theorem 8.1 in [2]

‖T p − T p
x̃‖ ≤ pκp−1 ‖T − Tx̃‖ , p ∈ N.(17)

We also need to introduce the orthogonal projector in H, Px̃,λ, defined by

Px̃,λ = Θλ(Tx̃),

with Θλ defined in (14).
We analyze the cases r ≤ 1

2
and r ≥ 1

2
separately.

Case r ≤ 1
2
: In the three steps below we subsequently estimate the norms of the three

terms of the expansion
√

T (Gλ(Tx̃) Tx̃ − Id) f tr
λ =

√
TP⊥x̃,λrλ(Tx̃) f tr

λ(18)

+Px̃,λrλ(Tx̃) T
1
2
x̃ f tr

λ

+(
√

T −√Tx̃)Px̃,λrλ(Tx̃) f tr
λ ,

where P⊥x̃,λ = Id− Px̃,λ and rλ(σ) = σGλ(σ)− 1.
Step 1: Observe that


√TP⊥x̃,λ




2

=



P⊥x̃,λTP⊥x̃,λ




 ≤ sup
φ∈Im P⊥

x̃,λ

(φ, Tφ)H
‖φ‖2H

≤ sup
φ∈Im P⊥

x̃,λ

(φ, Tx̃φ)H
‖φ‖2H

+ sup
φ∈H

(φ, (T − Tx̃)φ)H
‖φ‖2H

≤ λ + ‖Tx̃ − T‖ = λ(1 + γ).

Therefore, from definitions (2) and (4) and Proposition 5, it follows


√TP⊥x̃,λrλ(Tx̃) f tr
λ





H

≤



√TP⊥x̃,λ




 ‖rλ(Tx̃)‖


f tr

λ




H

≤ BrCr

p
1 + γλ̇r.
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Step 2: Observe that, from inequality (16), definition (4) and Proposition 5



T 1
2−r

x̃ f tr
λ






H

≤ ‖Θλ(T )‖



T 1

2−rfH




H

+





T 1
2−r − T

1
2−r

x̃







f tr
λ




H

≤ κ−rCr(1 + γ
1
2−r).(19)

Therefore from definition (3), it follows



Px̃,λrλ(Tx̃) T
1
2
x̃ f tr

λ






H

≤ ‖Px̃,λ‖ ‖rλ(Tx̃) T r
x̃‖




T 1

2−r

x̃ f tr
λ






H

≤ BrCr(1 + γ
1
2−r)λ̇r.

Step 3: Recalling the definition of Px̃,λ, and applying again inequality (19) and Propo-
sition 5, we get 


(√T −√Tx̃)Px̃,λrλ(Tx̃) f tr

λ





H

≤




(√T −√Tx̃)T

− 1
2+r

x̃ Px̃,λrλ(Tx̃) T
1
2−r

x̃ f tr
λ






H

≤



√T −√Tx̃








T− 1
2+r

x̃ Px̃,λ





 ‖rλ(Tx̃)‖




T 1

2−r

x̃ f tr
λ






H

≤ BrCrγ
1
2 (1 + γ

1
2−r)λ̇r.

Since we assumed 0 < r ≤ 1
2
, and therefore η = 1

2
− r, the three estimates above prove

the statement of the Theorem in this case.
Case r ≥ 1

2
: Consider the expansion

(Gλ(Tx̃) Tx̃ − Id) f tr
λ ≤ rλ(Tx̃) T r− 1

2 v

≤ rλ(Tx̃) T
r− 1

2
x̃ v + rλ(Tx̃)

�
T r− 1

2 − T
r− 1

2
x̃

�
v

≤ rλ(Tx̃) T
r− 1

2
x̃ v + rλ(Tx̃) T p

x̃

�
T r− 1

2−p − T
r− 1

2−p

x̃

�
v

+rλ(Tx̃) (T p − T p
x̃ ) T r− 1

2−pv

where v = PλT
1
2−rfH, rλ(σ) = σGλ(σ)− 1 and p = br − 1

2
c.

Now, for any β ∈ [0, 1
2
], from the expansion above using inequalities (16) and (17), and

definition (3), we get


T β
x̃ (Gλ(Tx̃) Tx̃ − Id) f tr

λ





H
≤




rλ(Tx̃) T

r− 1
2+β

x̃





 ‖v‖H
+



rλ(Tx̃) T p+β

x̃








T r− 1
2−p − T

r− 1
2−p

x̃





 ‖v‖H(20)

+



rλ(Tx̃) T β

x̃




 ‖T p − T p
x̃‖



T r− 1

2−p



 ‖v‖H

≤ BrCrκ
− 1

2+β
�
λ̇r− 1

2+β(1 + γr− 1
2−p) + pλ̇1+βγ

�
≤ BrCrκ

− 1
2+β

�
λ̇−

1
2+β(1 + γη) + rγλ̇1+β−r

�
λ̇r.

Finally, from the expansion


√T (Gλ(Tx̃) Tx̃ − Id) f tr
λ





H

≤



√T −√Tx̃




 

rλ(Tx̃) f tr
λ




H

+



√Tx̃rλ(Tx̃) f tr

λ





H

,
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using (16) and inequality (20) with β = 0 and β = 1
2
, we get the claimed result also in

this case. ¤

We need an additional preliminary result.

Proposition 7. Let the operator Ωλ be defined by

Ωλ =
√

TGλ(Tx̃) (Tx̃ + λ)(T + λ)−
1
2 .(21)

Then, if λ ∈ (0, κ], it holds

‖Ωλ‖ ≤ (1 + 2
√

γ) A,

with γ defined in eq. (15).

Proof. First consider the expansion

Ωλ =
�√

T −√Tx̃

�
∆λ (T + λ)−

1
2 −∆λ

�√
T −√Tx̃

�
(T + λ)−

1
2 + ∆λ

√
T (T + λ)−

1
2 ,

where we introduced the operator

∆λ = Gλ(Tx̃) (Tx̃ + λ).

By condition (2), it follows ‖∆λ‖ ≤ A. Moreover, from inequality (16)


√T −√Tx̃




 ≤p‖T − Tx̃‖.(22)

From the previous observations we easily get

‖Ωλ‖ ≤ 2 ‖∆λ‖



√T −√Tx̃




 


(T + λ)−
1
2




+ ‖∆λ‖



√T (T + λ)−

1
2





≤ A (1 + 2

√
γ) ,

the claimed result.
¤

We are now ready to show the proof of Theorem 2.

Proof of Theorem 2. We consider the expansion

√
T (fz̃,λ − fH) =

√
T
�
Gλ(Tx̃) gz − f tr

λ

�
+
√

T (f tr
λ − fH)

= Ωλ (T + λ)
1
2 (f ls

z̃,λ − f ls
z̃′,λ) +

√
T (Gλ(Tx̃) Tx̃ − Id) f tr

λ +
√

T (f tr
λ − fH)

= Ωλ

�
(T + λ)

1
2 (f ls

z̃,λ − f ls
λ ) + (T + λ)

1
2 (f ls

λ − f̄ ls
λ ) + (T + λ)

1
2 (f̄ ls

λ − f ls
z̃′,λ)

�
+
√

T (Gλ(Tx̃) Tx̃ − Id) f tr
λ +

√
T (f tr

λ − fH)

where the operator Ωλ is defined by equation (21), the ideal RLS estimators are f ls
λ =

(T +λ)−1TfH and f̄ ls
λ = (T +λ)−1Tf tr

λ , and f ls
z̃′,λ = (Tx̃ +λ)−1Tx̃f tr

λ is the RLS estimator
constructed by the training set

z̃′ = ((x̃1, f
tr
λ (x̃1)) . . . , (x̃m̃, f tr

λ (x̃m̃))).

Hence we get the following decomposition,

‖fz̃,λ − fH‖ρ ≤ D
�
Sls + R + S̄ls

�
+ P + P tr,(23)
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with

Sls =



(T + λ)

1
2 (f ls

z̃,λ − f ls
λ )




H

,

S̄ls =



(T + λ)

1
2 (f ls

z̃′,λ − f̄ ls
λ )




H

,

D = ‖Ωλ‖ ,

P =



√T (Gλ(Tx̃) Tx̃ − Id) f tr

λ





H

,

P tr =


f tr

λ − fH




ρ
,

R =



(T + λ)

1
2 (f̄ ls

λ − f ls
λ )




H

.

Terms Sls and S̄ls will be estimated by Proposition 1, term D by Proposition 7, term
P by Proposition 6 and finally terms P tr and R by Proposition 5.

Let us begin with the estimates of Sls and S̄ls. First observe that, by the same reasoning
in the proof of Theorem 1, the assumptions of the Theorem imply inequality (9) in the
text of Proposition 1.

Regarding the estimate of Sls. Applying Proposition 1 and reasoning as in the proof
of Theorem 1 (recall that by assumption m̃ ≥ mλ̇−|2−2r−s|+ ≥ mλ̇−|1−2r|+ and from

Proposition 3,
√

κ


f ls

λ




H ≤ Crλ̇

−| 12−r|+), we get that with probability greater than 1− δ

Sls ≤ 8

�
M +

r
m

m̃
Crλ̇

−| 12−r|+
� 

2

m

r
κ

λ
+

r
N (λ)

m

!
log

6

δ
(24)

≤ 8(M + Cr)
1√
m

 
2p
mλ̇

+
Dsp
λ̇s

!
log

6

δ

(eq. (7)) = 2(M + Cr)λ̇
r

 
1 +

λ̇r+s− 1
2

2D2
s log 6

δ

!
�

r + s ≥ 1

2

�
≤ 3(M + Cr)λ̇

r

The term S̄ls can be estimated observing that z̃′ is a training set of m̃ supervised
samples drawn i.i.d. from the probability measure ρ′ with marginal ρX and conditional
ρ′|x(y) = δ(y − f tr

λ (x)). Therefore the regression function induced by ρ′ is fρ′ = f tr
λ , and

the support of ρ′ is included in [−M ′, M ′] ×X, with M ′ = supx∈X fρ′(x) ≤ √
κ


f tr

λ




H.

Again applying Proposition 1 and reasoning as in the proof of Theorem 1, we obtain that
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with probability greater than 1− δ it holds

S̄ls ≤ 8
�
M ′ +

√
κ



f̄ ls

λ





H

� 2

m̃

r
κ

λ
+

r
N (λ)

m̃

!
log

6

δ
(25)

≤ 16
√

κ


f tr

λ




H

 
2

m̃

r
κ

λ
+

r
N (λ)

m̃

!
log

6

δ

(Prop.5) ≤ 16

r
m

m̃
Crλ̇

−| 12−r|+
 

2

m

r
κ

λ
+

r
N (λ)

m

!
log

6

δ

≤ 16Cr
1√
m

 
2p
mλ̇

+
Dsp
λ̇s

!
log

6

δ

(eq. (7)) = 4Crλ̇
r

 
1 +

λ̇r+s− 1
2

2D2
s log 6

δ

!
�

r + s ≥ 1

2

�
≤ 6Crλ̇

r

In order to get an upper bound for D and P , we have first to estimate the quantity
γ (see definition (15)) appearing in the Propositions 6 and 7. Our estimate for γ follows
from Proposition 4 applied to the random variable ξ : X → LHS(H) defined by

ξ(x)[·] = λ−1Kx 〈Kx, ·〉H .

We can set H = 2κ
λ

and σ = H
2

, and obtain that with probability greater than 1− δ

γ ≤ λ−1 ‖T − Tx̃‖HS ≤
2

λ

�
2κ

m̃
+

κ√
m̃

�
log

2

δ
≤ 4

1

λ̇
√

m̃
log

2

δ

≤ 4
λ̇
|1−r− s

2 |+−1

√
m

log
2

δ
≤ λ̇

|1−r− s
2 |+−(1−r− s

2 ) ≤ λ̇
|r+ s

2−1|+ ≤ 1,

where we used the assumption m̃ ≥ 4∨mλ̇−|2−2r−s|+ and the expression for λ̇ in the text
of the Theorem.

Hence, since γ ≤ 1, from Proposition 7 we get

D ≤ 3A,(26)

and from Proposition 6

P ≤ 2BrCr(3 + rγλ̇
3
2−r)λ̇r(27)

≤ 2BrCr(3 + rλ̇
|r+ s

2−1|++ 3
2−r

)λ̇r

≤ 2BrCr(3 + rλ̇
s+1
2 )λ̇r ≤ 2BrCr(3 + r)λ̇r.

Regarding terms P tr and R. From Proposition 5 we get

P tr ≤ Crλ̇
r,(28)

and hence,

R =



(T + λ)−

1
2 T (f̄ ls

λ − f ls
λ )




H

(29)

≤



√T (f̄ ls

λ − f ls
λ )




H
≤ P tr ≤ Crλ̇

r.

The proof is completed by plugging inequalities (24), (25), (26), (27), (28) and (29)

in (23) and recalling the expression for λ̇. ¤



15

Acknowledgements

The author wish to thank E. De Vito, T. Poggio, L. Rosasco, S. Smale, A. Verri and
Y. Yao for useful discussions and suggestions.

References

[1] F. Bauer, S. Pereverzev, and L. Rosasco. On regularization algorithms in learning theory.
preprint, 2005.

[2] M. S. Birman and M. Solomyak. Double operators integrals in hilbert scales. Integr. Equ.
Oper. Theory, pages 131–168, 2003.

[3] A. Caponnetto and E. De Vito. Fast rates for regularized least-squares algorithm. Tech-
nical report, Massachusetts Institute of Technology, Cambridge, MA, April 2005. CBCL
Paper#248/AI Memo#2005-013.

[4] A. Caponnetto and E. De Vito. Optimal rates for regularized least-squares algorithm. 2005.
to appear in Foundations of Computational Mathematics.

[5] F. Cucker and S. Smale. On the mathematical foundations of learning. Bull. Amer. Math.
Soc. (N.S.), 39(1):1–49 (electronic), 2002.

[6] E. De Vito and A. Caponnetto. Risk bounds for regularized least-squares algorithm with
operator-valued kernels. Technical report, Massachusetts Institute of Technology, Cambridge,
MA, May 2005. CBCL Paper #249/AI Memo #2005-015.

[7] E. De Vito, A. Caponnetto, and L. Rosasco. Model selection for regularized least-squares al-
gorithm in learning theory. Foundation of Computational Mathematics, 5(1):59–85, February
2005.

[8] E. De Vito, L. Rosasco, and A. Caponnetto. Discretization error analysis for tikhonov regu-
larization. to appear in Analisys and Applications, 2005.

[9] E. De Vito, L Rosasco, A. Caponnetto, U. De Giovannini, and F. Odone. Learning from
examples as an inverse problem. Journal of Machine Learning Research, 6:883–904, 2005.

[10] E. De Vito, L. Rosasco, and A. Verri. Spectral methods for regularization in learning theory.
preprint, 2005.

[11] R. DeVore, G. Kerkyacharian, D. Picard, and V. Temlyakov. Mathematical methods for
supervised learning. Technical report, Industrial Mathematics Institute, University of South
Carolina, 2004.

[12] H. W. Engl, M. Hanke, and A. Neubauer. Regularization of inverse problems, volume 375 of
Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 1996.

[13] T. Evgeniou, M. Pontil, and T. Poggio. Regularization networks and support vector machines.
Adv. Comp. Math., 13:1–50, 2000.

[14] C. W. Groetsch. The theory of Tikhonov regularization for Fredholm equations of the first
kind, volume 105 of Research Notes in Mathematics. Pitman (Advanced Publishing Program),
Boston, MA, 1984.
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