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Abstract

In this paper we consider the problem of learning from dagsstipport of a prob-
ability distribution when the distributiodoes nothave a density (with respect to
some reference measure). We propose a new class of regdlapectral esti-
mators based on a new notion of reproducing kernel Hilbextspwhich we call
“completely regular”. Completely regular kernels allow to capture the relevant
geometric and topological properties of an arbitrary philitg space. In partic-
ular, they are the key ingredient to prove the universal isterscy of the spectral
estimators and in this respect they are the analogue of ngaivikernels for su-
pervised problems. Numerical experiments show that spleattimators compare
favorably to state of the art machine learning algorithmrdensity support esti-
mation.

1 Introduction

In this paper we consider the problem of estimating the stpd@n arbitrary probability distribu-
tion and we are more broadly motivated by the problem of i@arfrom complex high dimensional
data. The general intuition that allows to tackle these lgrob is that, though the initial repre-
sentation of the data is often very high dimensional, in nsisttions the data are not uniformly
distributed, but are in fact confined to a small (possibly imensional) region. Making such an
intuition rigorous is the key towards designing effectilgaaithms for high dimensional learning.
The problem of estimating the support of a probability disttion is of interest in a variety of ap-
plications such as anomaly/novelty detection [8], or stefamodeling [16]. From a theoretical point
of view the problem has been usually considered in the ggithere the probability distribution has
a density with respect to a known measure (for example thedgie measure iR¢ or the volume
measure on a manifold). Among others we mention [22, 5] afeteaces therein. Algorithms in-
spired by Support Vector Machine (SVM), often called onessISVM are have been proposed see
[17, 20] and references therein. Another kernel methodtedlto the one we discuss in this paper, is
presented in [11]. More generally one of the main approathk=arning from high dimensional is
the one considered in manifold learning. In this contexidat are assumed to lie on a low dimen-
sional Riemannian sub-manifold embedded (that is reptedgin a high dimensional Euclidean
space. This framework inspired algorithms to solve a waeéiproblems such as: semisupervised
learning [3], clustering [23], data parameterization/dimionality reduction [15, 21], to name a few.
The basic assumption underlying manifold learning is oftenrestrictive to describe real data and
this motivates considering other models, such as the geitirere the data are assumed toese
sentiallyconcentrated around a low dimensional manifold as in [12¢am be modeled as samples
from a metric space as in [10].



In this paper we consider a general scenario (see [18]) wherenderlying model is a probability
spacg X, p) and we are given a{milarity) function K which is a reproducing kernel. The available
training setis an i.i.d sample,, ..., x, ~ p. The geometry (and topology) X, p) is defined by
the kernell. While this framework is abstract and poses new challermyesssuming the similarity
function to be a reproducing kernel we can make full use ofgthed computational properties of
kernel methods and the powerful theory of reproducing Ketliiilbert spaces (RKHS) [2]. Interest-
ingly, the idea of using a reproducing kerri€lto construct a metric on a sét is originally due to
Schoenberg (see for example [4]).

Broadly speaking, in this setting we consider the problerfinafing a model of the smallest region
X, containing all the dataA rigorous formalization of this problem requires: 1) définthe region
X,, 2) specifying the sense in which we modg}. This can be easily done if the probability distri-
bution has density with respect to a known measure, in fa¢f = {x € X : p(z) > 0}, butis
otherwise a challenging question for a general distrilutlatuitively, X', can be thought of as the
region where the distribution is concentrated, that(i¥,) = 1. However, there are many different
sets having this property. X is R? (in fact any topological space), a natural candidate to defie
region of interest, is the notion supportof a probability distribution— defined as the intersection
of the closed subsets of X, such thap(C') = 1. In an arbitrary probability space the support of
the measure is not well defined since no topology is given.

The reproducing kernek provides a way to solve this problem and also suggests abes-
proach to modeK,. The first idea is to use the fact that under mild assumptioasérnel defines
a metric onX [18], so that the concept of closed set, hence that of supigontell defined. The
second idea is to use the kernel to construct a fundtipsuch that the level set corresponding to
one is exactly the suppoX ,— in this case we say that the RKHS associated'tseparateghe
supportX,. By doing this we are in fact imposing an assumption’gn given a kernel, we can
only separate certain sets. More precisely, our contobus two-fold.

o We prove thatF, is uniquely defined by the null space of the integral operassociated
to K. Given that the integral operator (and its spectral prag&rican be approximated
studying the kernel matrix on a sample, this result suggesiay to estimate the support
empirically. However, a further complication arises frone tfact that in general zero is
not an isolated point of the spectrum, so that the estimati@null space is an ill-posed
problem (see for example [9]). Then, a regularization appias needed in order to find a
stable (hence generalizing) estimator. In this paper, wsider a spectral estimator based
on a spectral regularization strategy, replacing the kenagrix with its regularized version
(Tikhonov regularization being one example).

e We introduce the notion afompletely regular RKHShat answer positively to the ques-
tion whether there exist kernels that can separate the supiamydistribution. Examples
of completely regular kernels are presented and resultgestiog how they can be con-
structed are given. The concept of completely regular RKK§sa role similar to the
concept of universal kernels in supervised learning, fanegle see [19].

Finally, given the above results, we show that the reggargpectral estimator enjoys a universal
consistency property: the correct support can be asynopthytirecovered foany problem (that is
any probability distribution).

The plan of the paper is as follows. In Section 2 we introdineertotion of completely regular
kernels and their basic properties. In Section 3 we presenpitoposed regularized algorithms. In
Section 4 and 5 we provide a theoretical and empirical arglysspectively. Proofs and further
development can be found in the supplementary material.

2 Completely regular reproducing kernel Hilbert spaces

In this section we introduce the notion of a completely raguéproducing kernel Hilbert space.
Such a space defines a geometry on a measurable Spabéch is compatible with the measurable
structure. Furthermore it shows how to define a funcfibsuch that the one level set is the support
of the probability distribution. The function is determihley the spectral projection associated with
the null eigenvalue of the integral operator defined by tipeagucing kernel. All the proofs of this
section are reported in the supplementary material.



We assumeX to be a measurable space with a probability measuvée fix a complekreproducing
kernel Hilbert spacé{ on X with a reproducing kernek : X x X — C [2]. The scalar product
and the norm are denoted by-), linear in the first argument, and||, respectively. For alk € X,
K, € H denotes the functio& (-, z). For each functiorf € H, the reproducing propertf(z) =

(f, K.) holds for allz € X. When different reproducing kernel Hilbert spaces are iclemed, we
denote byH x the reproducing kernel Hilbert space with reproducing kefi. Before giving the
definition of completely regular RKHS, which is the key copicgresented in this section, we need
some preliminary definitions and results.

Definition 1. A subset” C X is separatethy 7, if, for anyzy ¢ C, there existy € H such that
f(zo) 20 and f(z)=0 Vx € C. 1)

For example, ifX = R? and* is the reproducing kernel Hilbert space with linear kediélr, t) =

x - t, the sets separated I3y are precisely the hyperplanes containing the origin. In(&ythe
function f depends oy andC, but Proposition 1 below will show that there is a functioosgibly
notin’H, whose one level set is precisely( if K (z,z) = 1). Note that in [19] a different notion
of separating propertys given.

We need some further notation. For any 6etet P~ : H — H be the orthogonal projection onto
the closure of the linear space generated By, | « € C'}, so thatPZ = P¢, P}, = Pc and

ker Po = {K, |z € C} = {f € H| f(z) =0, Yz € C}.

Moreover letF : X — C be defined byf(z) = (Po K., K,) .
Proposition 1. For any subse€ C X, the following facts are equivalent

(i) the setC is separated by
(i) forall x ¢ C, K, ¢ Ran Pc;
(i) C={reX|Fo(x)=K(z,x)}.
If one of the above conditions is satisfied, tHéfw, ) # 0 Vo ¢ C.

A natural and minimal requirement ¢t is to be able to separates any pairs of distinct points and
this implies thatK', # K, if © # t andK (z,z) # 0. The first condition ensures the metric given
by

di(z,y) = | Ko — K|zt € X )
to be well defined. The(X, dx) is a metric space and the sets separate@bgre alwaysiy-
closed, see Prop. 2 below. This last property is not enoughsare that we can evaluat®n the
set separated by RKHR. In fact theo-algebra generated by the metdienight not be contained in
the o-algebra onX. The next result shows that assuming the kernel to be mdastusaenough to
solve this problem.

Proposition 2. Assume thak(, # K, if x # t, then the sets separated Byare closed with respect
to dx . Moreover, ifH is separable and the kernel is measurable, then the setsatepebyH are
measurable.

Given the above premises, the following is the key definitioat characterizes the reproducing
kernel Hilbert spaces which are able to separatéaigestfamily of subsets ofX .

Definition 2 (Completely Regular RKHS)A reproducing kernel Hilbert space with reproducing
kernel K such thatK, # K, if x # t is called completely regular if{ separates all the subsets
C C X which are closed with respect to the metf&).

The termcompletely regulais borrowed from topology, where a topological space isechttom-
pletely regular if, for any closed subsgtand any point:, ¢ C, there exists a continuous functign
such thatf (z) # 0 andf(z) = Oforall z € C'. In the supplementary material, several examples of
completely regular reproducing kernel Hilbert spaces areng as well as a discussion on how such
spaces can be constructed. A particular case is whes already a metric space with a distance

1Considering complex valued RKHS allows to use the theoryafrier transform and for practical prob-
lems we can simply consider real valued kernels.



functiondx. If K is continuous with respect @y, the assumption of complete regularity forces
the metricsdx anddx to have the same closed subsets. Then, the supports defirkd doydd x
are the same. Furthermore, since the closed setsark independent ¢f/, the complete regularity
of H can be proved by showing that a suitable familjoamg functions is contained if.

Corollary 1. LetX be a separable metric space with respect to a meltsic Assume that the kernel
K is a continuous function with respectd@ and that the space separates every subsetwhich
is closed with respect tdx. Then

(i) The spacé is separable ands is measurable with respect to the Boseblgebra gener-
ated byd x.

(i) The metricdx defined by(2) is equivalent taix, that is, a set is closed with respectdg
if and only if it is closed with respect )y .

(iii) The spaceH is completely regular.

As a consequence of the above result, many classical regirgdkernel Hilbert spaces are com-
pletely regular. For example, ¥ = R? and™ is the Sobolev space of ordewith s > d/2, thenH

is completely regular. This is due to the fact that the spadsen@oth compactly supported functions
is contained irH. In fact, a standard result of analysis ensures that, forckssed set” and any
xo ¢ C there exists a smooth bump function such that,) = 1 and its support is contained in
the complement of’. Interestingly enough, iH is the reproducing kernel Hilbert space with the
Gaussian kernel, it is known that the element$fére analytic functions, see Cor. 4.44 in [19].
ClearlyH can not be completely regular. Indeed¢ffis a closed subset &? with not empty inte-
riorand f € H is such thatf(z) = 0 for all z € C, a standard result of complex analysis implies
that f(z) = 0 for everyz € R*. Finally, the next result shows that the reproducing kecael be
normalized to one on the diagonal under the mild assumptiat¥f (z, x) # 0 forall x € X.

Lemma 1. Assume thaf{(x,2z) > 0 for all z € X. Then the reproducing kernel Hilbert space
K(z,t)

with the normalized kernél’ (z,t) = —————
K (z, 2)K(t,1)

separates the same sets7s

Finally we briefly mention some examples and refer to the kmpentary material for further de-
[z —yll
velopments. In particular, we prove that both the Lapla&iamel K (z,y) = ¢~ e and/;-
lz—yll
exponential kerneK (z,y) = ¢~ V2o defined orR? are completely regular for any > 0 and

d € N.

3 Spectral Algorithms for Learning the Support

In this section, we first discuss our framework and our masuagptions. Then we present the
proposed regularized spectral algorithms.

Motivated by the results in the previous section, we desarily framework which is given by a triple
(X, p,K). We consider a probability spa¢e, p) and a training sek = (z;...,x,) sampled
i.i.d. with respect top. Moreover we consider a reproducing kerr€lsatisfying the following
assumption.

Assumption 1. The reproducing kernék is measurable an& (z, z) = 1, forall z € X. Moreover
K defines a completely regular and separable RKIAS

We endowX with the metricdy defined in (2), so thak’ becomes a separable metric space. The
assumption of complete regularity ensures that any closkses is separated k¥ and, hence, is
measurable by Prop. 2. Then we can define the suppodf the measure, as the intersection of
all the closed set§' C X, such thap(C') = 1. Clearly X, is closed ang(X,) = 1 (note that this
last property depends on the separability\afhence ofH).

Summarizing the key result in the previous section, undeatiove assumption,, is the one level
set of the functiorF, : X — [0, 1]

Fy(x) = (P Ky, Ka)

2Given an open subséf and a compact subsét C U, a bump function is a continuous compactly sup-
ported function which is one o' and its support is contained UA.



where P, is a short notation foP’y,. SinceF), depends on the unknown measuren practice
it cannot be explicitly calculated. To design an effectivepérical estimator we develop a novel
characterization of the support of an arbitrary distribntihat we describe in the next section.

3.1 A New Characterization of the Support

The key observation towards defining a learning algorithestomateX , it is that the projectior,
can be expressed in terms of the integral operator defineldeoietrneli .
To see this, for alk € X, let K, ® K, denote the rank one positive operatorigngiven by

Kz ® Ky)(f) = (f, Ku) Ko = f(2) Ky JEH.
Moreover, letl" : ‘H — ‘H be the linear operator defined as

T= / K, ® K,dp(z),
X

where the integral converges in the Hilbert space of Hissttmidt operators oK (see for example
[7] for the proof). Using the reproducing propertyt [2], it is straightforward to see thé&t is
simply the integral operator with kern&l with domain and range .

Then, one can easily see that the null spacg ©f precisely( — P,)H, so that

P,=T'T, 3)
whereT'" is the pseudo-inverse @f (see for example [9]). Hence
Fy(z) = (T'"TK,, K,).

Observe that in generdl, does not belong to the domain @f and, if ¥ denotes the Heaviside
function with6(0) = 0, then spectral theory gives thB;, = 77T = 6(T'). The above observation
is crucial as it gives a new characterization of the suppbytio terms of the null space &f and
the latter can be estimated from data.

3.2 Spectral Regularization Algorithms

Finally, in this section, we describe how to construct amestor £, of F,. As we mentioned above,
Eq. (3) suggests a possible way to learn the projection froitefdata. In fact, we can consider the
empirical version of the integral operator associatefi tawhich is simply defined by

T, = %;Kz ® K,

The latter operator is an unbiased estimatofl'ofIndeed, since(, ® K, is a bounded random
variable into the separable Hilbert space of Hilbert-Sattroperators, one can use concentration
inequalities for random variables in Hilbert spaces to priat

lim v

n—+00 10g n

1T —Thllus =0 almost surely 4)

where||-||us is the Hilbert-Schmidt norm (see for example [14] for a shwdof). However, in
generall[ T,, does non converge 677 since0 is an accumulation point of the spectrummbr,
equivalently, sincdT is not a bounded operator. Hence, a regularization applisaeeded.

In this paper we study a spectral filtering approach whictaegs?’| with an approximatio (7},)
obtainediltering outthe components corresponding to the small eigenvalu&s.of he functiong

is defined by spectral calculus. More precisely,if = Zj ojv; ®v; is a spectral decomposition of
Ty, theng(Ty) = >_; ga(0;)v; @ v;. Spectral regularization defined by linear filters is cleaisin
the theory of inverse problems [9]. Intuitively, (77,) is an approximation of the generalized inverse

T} and it is such that the approximation gets better, but thelition number ofy, (7},) gets worse
as\ decreases. More formally these properties are capturduebiplowing set of conditions.

Assumption 2. For o € [0, 1], letry (o) := oga(o), then

o rA(0) €10,1], YA >0,



e limy_gra(o)=1,, Vo >0
o [ra(0) —ra(0’)| < Lalo — ¢’|, VA > 0, whereL, is a positive constant depending an

Examples of algorithms that fall into the above class inelitdrative methods— akin to boosting
ga(o) =312 (1 = 0)*, spectral cut-offjx (0) = 21,51(0) + 1,<a(c), and Tikhonov regular-
izationgy (o) = le We refer the reader to [9] for more details and examples, gindn the space
constraints, will focus mostly on Tikhonov regularizatiarthe following.

For a chosen filter, the regularized empirical estimataf,ptan be defined by

Ey(z) = (ga (1) T Ko, Ko - (5)

One can see that that the computatiorFpfreduces to solving a simple finite dimensional problem
involving the empirical kernel matrix defined by the traigidata. Towards this end, it is useful to
introduce the sampling operat6y, : H — C"™ defined byS,,f = (f(z1),..., f(zn)), [ € H,
which can be interpreted as the restriction operator whieluates functions ifi{ on the training set
points. The adjoinf}; : C* — H of S,, isgivenbyS;a =" | a;K,,, « = (o,...,a,) € C",
and can be interpreted as the out-of-sample extension topefa simple computation shows that
T, = %S;;Sn ands, S = K, is then by n kernel matrix, where thé¢i, j)-entry is K (z;, ;).

Then it is easy to see thak (T},) T, = gx(S5:Sn/n)S:Sp/n = %Sj;gA(Kn/n)Sn, so that
1
Fo(w) = ~ko" g3 (K /n)ks, (6)

wherek, is then-dimensional column vectde, = S, K, = (K(z1,x), ..., K(z,,2)). Note that
Equation (6) plays the role of a representer theorem for pleetsal estimator, in the sense that it
reduces the problem of finding an estimator in an infinite disi@nal space to a finite dimensional
problem.

4 Theoretical Analysis: Universal Consistency

In this section we study the consistency property of spkeestanators. All the proofs of this section
are reported in the supplementary material. We prove thétsasnly for the filter corresponding to
the classical Tikhonov regularization though the samelt®hold for the class of spectral filters de-
scribed by Assumption 2. To study the consistency of the otstlive need to choose an appropriate
performance measure to compdfgandF,. Note that there is no natural notion 1igk, since we
have to compute the functian andoff the support. Also note that standard metric used for support
estimation (see for example [22, 5]) cannot be used in ousgsaince they rely on the existence
of a reference measuye (usually the Lebesgue measure) and the assumptiomn tisadbsolutely
continuous with respect to.

The following preliminary result shows that we can contia@ tonvergence of the Tikhonov esti-
mator F,, defined byg, (T') = (T}, + A, I)~*, to F, uniformly on any compact set of, provided

a suitable sequence,.

Theorem 1. Let F,, be the estimator defined by Tikhonov regularization and sk@sequenck,

so that
logn

nlingo A, =0 and lgnjgop = < +00, (7)
then
lim sup|F,(z) — F,(z)| =0, almost surely (8)

n—+00 zeQ
for every compact subsét of X

We add three comments. First, we note that, as we mentionfedeb&ikhonov regularization
can be replaced by a large class of filters. Second, we ob#®tvea natural choice would be the
regularization defined by kernel PCA [11], which correspotadtruncating the generalized inverse
of the kernel matrix at some cutoff paramekeiHowever, one can show that, in general, in this case
it is not possible to choosk so that the sample error goes to zero. In fact, for KPCA thepgam
error depends on the gap between fiieth and theM + 1-th eigenvalue ofl’ [1], where M -th
and M + 1-th are the eigenvalues around the cutoff parameter. Suelp @an go to zero with an



arbitrary rate so that there existis choice of the cut-off parameter ensuring convergence to zer
of the sample error. Third, we note that the uniform conveegeof £}, to F,, on compact subsets
does notmply the convergence of the level sets/gf to the corresponding level sets 6§, for
example with respect to the standard Hausdorff distancengrolesed subsets. In practice to have
an effective decision rule, an off-set parametercan be introduced and the level set is replaced by
X, ={zx € X | F,(x) > 1-7,} —recall thatF}, takes values iff0, 1]. The following result will
show that for a suitable choice of the Hausdorff distance betweéf), N C and X, N C goes to
zero for all compact setS. We recall that the Hausdorff distance between two subsels C X is

d, (4, B) = max{sup dk(a, B),supdg (b, A)}
a€A beB

Theorem 2. If the sequencér,,),en converges to zero in such a way that

lim sup supm€c|Fn(x) - Fp($)|

n—oo T’n,

<1,  almostsurely )

then,
lim d,(X,NC,X,NC)=0 almost surely

n—-+o0o

for any compact subsét.

We add two comments. First, it is possible to show that, if(themalized) kernekK is such that
lim, ., K,(z') = 0 foranyx € X — as it happens for the Laplacian kernel, then Theorems 1
and 2 also hold by choosing = X. Second, note that the choice of depends on the rate of
convergence of’, to F,, which will itself depend on some a-priori assumption@nDeveloping
learning rates and finite sample bound is a key question teatitackle in future work.

5 Empirical Analysis

In this section we describe some preliminary experimenteediat testing the properties and the
performances of the proposed methods both on simlautedeahdata. Again for space constraints
we will only discuss spectral algorithms induced by Tikhenegularization. Note that while com-
putations can be made efficient in several ways, we consisiatge algorithmic protocol and leave
a more refined computational study for future work. Follogvthe discussion in the last section,
Tikhonov regularization defines an estimato(z) = kwT(Kn +nAI) "'k, and a point is labeled
as belonging to the support#, (z) > 1 — 7. The computational cost for the algorithm is, in the
worst case, of order?, like standard regularized least squares, for training@der Nn? if we
have to predict the value df,, at V test points. In practice, one has to choose a good valueéor th
regularization parameterand this requires computing multiple solutions, a so cakgdlarization
path As noted in [13], if we form the inverse using the eigendeposition of the kernel matrix the
price of computing the full regularization path is essdlytidne same as that of computing a single
solution (note that the cost of the eigen-decompositidi€ pfis also of order? though the constant
is worse). This is the strategy that we consider in the falhgw In our experiments we consid-
ered two data-sets the MNIST data-set and the CBCL face asg¢ab-or the digits we considered
a reduced set consisting of a training set of 5000 images aast aet of 1000 images. In the first
experiment we trained d500 images for the digi8 and tested 0200 images of digit$ and8. Each
experiment consists of training on one class and testingvordifferent classes and was repeated
for 20 trials over different training set choices. The parfance is evaluated computing ROC curve

(and the corresponding AUC value) for varying”, 7 . For all our experiments we considered the
Laplacian kernel. Note that, in this case the algorithm imeguto choos@ parameters: the regular-
ization parametek, the kernel widthr and the threshold. In supervised learning cross validation
is typically used for parameter tuning, but cannot be useaalinsetting since support estimation is
an unsupervised problem. Then, we considered the folloWwegistics. The kernel width is cho-
sen as the median of the distribution of distances ofthth nearest neighbor of each training set
point for K = 10. Fixed the kernel width, we choose regularization paranieteorrespondence
of the maximum curvature in the eigenvalue behavior— seer€if, the rational being that after this
value the eigenvalues are relatively small. For compangeconsidered a Parzen window density
estimator and one-class SVM (1CSVM )as implemented by [6}. tRe Parzen window estimator
we used the same kernel used in the spectral algorithm, ghitheilLaplacian kernel and use the
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Figure 1: Decay of the eigenvalues of the kernel matrix ardém decreasing magnitude and corre-
sponding regularization parameter (Left) and a detail effitst50 eigenvalues (Right).

same width used in our estimator. Given a kernel width ammegé of the probability distribution
is computed and can be used to estimate the support by fixihgeaholdr’. For the one-class
SVM we considered the Gaussian kernel, so that we have todiketimel width and a regularization
parameter. We fix the kernel width to be the same used by our estimatoffized v = 0.9. For
the sake of comparison, also for one-class SVM we considevedying offset-” . The ROC curves
on the different tasks are reported (for one of the trial) iguFe 2, Left. The mean and standard
deviation of the AUC for the 3 methods is reported in Table Bnifar experiments were repeated
considering other pairs of digits, see Table 5. Also in theeaaf the CBCL data sets we considered
a reduced data-set consistingdd® images for training and othef72 for test. On the different test
performed on the Mnist data the spectral algorithm alwaysezes results which are better- and
often substantially better - than those of the other methGdshe CBCL dataset SVM provides the
best result, but spectral algorithm still provides a coritivetperformance.

6 Conclusions

In this paper we presented a new approach to estimate thesaban arbitrary probability distri-
bution. Unlike previous work we drop the assumption thatdisé&ribution has a density with respect
to a (known) reference measure and consider a general plibbgpace. To overcome this prob-
lem we introduce a new notion of RKHS, that we call completetyular, that captures the relevant
geometric properties of the probability distribution. Theéhe support of the distribution can be
characterized as the null space of the integral operatanetifiy the kernel and can be estimated
using a spectral filtering approach. The proposed estimat@r proven to be universally consistent
and have good empirical performances on some benchmarsetstaFuture work will be devoted

MNIST 9vs4 MNIST 1vs7 CBCL

ppppppppppppppppppppppp

Figure 2: ROC curves for the different estimator in threéedént tasks: digifvs4 Left, digit 1vs 7
Center, CBCL Right.

3vs 8 8vs 3 1vs7 9vs 4 CBCL

Spectral 0.8371 + 0.0056 0.7830 + 0.0026 0.9921 + 4.7283e — 04 0.8651 4 0.0024 0.8682 + 0.0023
Parzen 0.7841 + 0.0069 0.7656 + 0.0029 0.9811 + 3.4158e — 04 0.0.7244 £+ 0.0030 0.8778 + 0.0023
1CSVM 0.7896 + 0.0061 0.7642 + 0.0032 0.9889 + 1.8479e — 04 0.7535 £+ 0.0041 0.8824 + 0.0020

Table 1: Average and standard deviation of the AUC for thiediht estimators on the considered
tasks.



to derive finite sample bounds, to develop strategies t@agalthe algorithms to massive data-sets
and to a more extensive experimental analysis.
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