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Abstract

In this paper we consider the problem of learning from data the support of a prob-
ability distribution when the distributiondoes nothave a density (with respect to
some reference measure). We propose a new class of regularized spectral esti-
mators based on a new notion of reproducing kernel Hilbert space, which we call
“completely regular”. Completely regular kernels allow to capture the relevant
geometric and topological properties of an arbitrary probability space. In partic-
ular, they are the key ingredient to prove the universal consistency of the spectral
estimators and in this respect they are the analogue of universal kernels for su-
pervised problems. Numerical experiments show that spectral estimators compare
favorably to state of the art machine learning algorithms for density support esti-
mation.

1 Introduction

In this paper we consider the problem of estimating the support of an arbitrary probability distribu-
tion and we are more broadly motivated by the problem of learning from complex high dimensional
data. The general intuition that allows to tackle these problems is that, though the initial repre-
sentation of the data is often very high dimensional, in mostsituations the data are not uniformly
distributed, but are in fact confined to a small (possibly lowdimensional) region. Making such an
intuition rigorous is the key towards designing effective algorithms for high dimensional learning.
The problem of estimating the support of a probability distribution is of interest in a variety of ap-
plications such as anomaly/novelty detection [8], or surface modeling [16]. From a theoretical point
of view the problem has been usually considered in the setting where the probability distribution has
a density with respect to a known measure (for example the Lebesgue measure inRd or the volume
measure on a manifold). Among others we mention [22, 5] and references therein. Algorithms in-
spired by Support Vector Machine (SVM), often called one-class SVM are have been proposed see
[17, 20] and references therein. Another kernel method, related to the one we discuss in this paper, is
presented in [11]. More generally one of the main approachesto learning from high dimensional is
the one considered in manifold learning. In this context thedata are assumed to lie on a low dimen-
sional Riemannian sub-manifold embedded (that is represented) in a high dimensional Euclidean
space. This framework inspired algorithms to solve a variety of problems such as: semisupervised
learning [3], clustering [23], data parameterization/dimensionality reduction [15, 21], to name a few.
The basic assumption underlying manifold learning is oftentoo restrictive to describe real data and
this motivates considering other models, such as the setting where the data are assumed to bees-
sentiallyconcentrated around a low dimensional manifold as in [12], or can be modeled as samples
from a metric space as in [10].
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In this paper we consider a general scenario (see [18]) wherethe underlying model is a probability
space(X, ρ) and we are given a (similarity) functionK which is a reproducing kernel. The available
training set is an i.i.d samplex1, . . . , xn ∼ ρ. The geometry (and topology) in(X, ρ) is defined by
the kernelK. While this framework is abstract and poses new challenges,by assuming the similarity
function to be a reproducing kernel we can make full use of thegood computational properties of
kernel methods and the powerful theory of reproducing kernel Hilbert spaces (RKHS) [2]. Interest-
ingly, the idea of using a reproducing kernelK to construct a metric on a setX is originally due to
Schoenberg (see for example [4]).
Broadly speaking, in this setting we consider the problem offinding a model of the smallest region
Xρ containing all the data. A rigorous formalization of this problem requires: 1) defining the region
Xρ, 2) specifying the sense in which we modelXρ. This can be easily done if the probability distri-
bution has densityp with respect to a known measure, in factXρ = {x ∈ X : p(x) > 0}, but is
otherwise a challenging question for a general distribution. Intuitively,Xρ can be thought of as the
region where the distribution is concentrated, that isρ(Xρ) = 1. However, there are many different
sets having this property. IfX is Rd (in fact any topological space), a natural candidate to define the
region of interest, is the notion ofsupportof a probability distribution– defined as the intersection
of the closed subsetsC of X , such thatρ(C) = 1. In an arbitrary probability space the support of
the measure is not well defined since no topology is given.
The reproducing kernelK provides a way to solve this problem and also suggests a possible ap-
proach to modelXρ. The first idea is to use the fact that under mild assumptions the kernel defines
a metric onX [18], so that the concept of closed set, hence that of support, is well defined. The
second idea is to use the kernel to construct a functionFρ such that the level set corresponding to
one is exactly the supportXρ– in this case we say that the RKHS associated toK separatesthe
supportXρ. By doing this we are in fact imposing an assumption onXρ: given a kernelK, we can
only separate certain sets. More precisely, our contribution is two-fold.

• We prove thatFρ is uniquely defined by the null space of the integral operatorassociated
to K. Given that the integral operator (and its spectral properties) can be approximated
studying the kernel matrix on a sample, this result suggestsa way to estimate the support
empirically. However, a further complication arises from the fact that in general zero is
not an isolated point of the spectrum, so that the estimationof a null space is an ill-posed
problem (see for example [9]). Then, a regularization approach is needed in order to find a
stable (hence generalizing) estimator. In this paper, we consider a spectral estimator based
on a spectral regularization strategy, replacing the kernel matrix with its regularized version
(Tikhonov regularization being one example).

• We introduce the notion ofcompletely regular RKHS, that answer positively to the ques-
tion whether there exist kernels that can separate the support of anydistribution. Examples
of completely regular kernels are presented and results suggesting how they can be con-
structed are given. The concept of completely regular RKHS plays a role similar to the
concept of universal kernels in supervised learning, for example see [19].

Finally, given the above results, we show that the regularized spectral estimator enjoys a universal
consistency property: the correct support can be asymptotically recovered foranyproblem (that is
any probability distribution).
The plan of the paper is as follows. In Section 2 we introduce the notion of completely regular
kernels and their basic properties. In Section 3 we present the proposed regularized algorithms. In
Section 4 and 5 we provide a theoretical and empirical analysis, respectively. Proofs and further
development can be found in the supplementary material.

2 Completely regular reproducing kernel Hilbert spaces

In this section we introduce the notion of a completely regular reproducing kernel Hilbert space.
Such a space defines a geometry on a measurable spaceX which is compatible with the measurable
structure. Furthermore it shows how to define a functionF such that the one level set is the support
of the probability distribution. The function is determined by the spectral projection associated with
the null eigenvalue of the integral operator defined by the reproducing kernel. All the proofs of this
section are reported in the supplementary material.
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We assumeX to be a measurable space with a probability measureρ. We fix a complex1 reproducing
kernel Hilbert spaceH on X with a reproducing kernelK : X × X → C [2]. The scalar product
and the norm are denoted by〈·, ·〉, linear in the first argument, and‖·‖, respectively. For allx ∈ X ,
Kx ∈ H denotes the functionK(·, x). For each functionf ∈ H, the reproducing propertyf(x) =
〈f, Kx〉 holds for allx ∈ X . When different reproducing kernel Hilbert spaces are considered, we
denote byHK the reproducing kernel Hilbert space with reproducing kernel K. Before giving the
definition of completely regular RKHS, which is the key concept presented in this section, we need
some preliminary definitions and results.

Definition 1. A subsetC ⊂ X is separatedbyH, if, for anyx0 6∈ C, there existsf ∈ H such that

f(x0) 6= 0 and f(x) = 0 ∀x ∈ C. (1)

For example, ifX = Rd andH is the reproducing kernel Hilbert space with linear kernelK(x, t) =
x · t, the sets separated byH are precisely the hyperplanes containing the origin. In Eq.(1) the
functionf depends onx0 andC, but Proposition 1 below will show that there is a function, possibly
not inH, whose one level set is preciselyC ( if K(x, x) = 1 ). Note that in [19] a different notion
of separating propertyis given.
We need some further notation. For any setC, let PC : H → H be the orthogonal projection onto
the closure of the linear space generated by{Kx | x ∈ C}, so thatP 2

C = PC , P ∗
C = PC and

kerPC = {Kx | x ∈ C}⊥ = {f ∈ H | f(x) = 0, ∀x ∈ C}.
Moreover letFC : X → C be defined byFC(x) = 〈PCKx, Kx〉 .

Proposition 1. For any subsetC ⊂ X , the following facts are equivalent

(i) the setC is separated byH;

(ii) for all x 6∈ C, Kx /∈ Ran PC ;

(iii) C = {x ∈ X | FC(x) = K(x, x)}.

If one of the above conditions is satisfied, thenK(x, x) 6= 0 ∀x /∈ C.

A natural and minimal requirement onH is to be able to separates any pairs of distinct points and
this implies thatKx 6= Kt if x 6= t andK(x, x) 6= 0. The first condition ensures the metric given
by

dK(x, y) = ‖Kx − Kt‖ x, t ∈ X. (2)

to be well defined. Then(X, dK) is a metric space and the sets separated byH are alwaysdK-
closed, see Prop. 2 below. This last property is not enough toensure that we can evaluateρ on the
set separated by RKHSH. In fact theσ-algebra generated by the metricd might not be contained in
theσ-algebra onX . The next result shows that assuming the kernel to be measurable is enough to
solve this problem.

Proposition 2. Assume thatKx 6= Kt if x 6= t, then the sets separated byH are closed with respect
to dK . Moreover, ifH is separable and the kernel is measurable, then the sets separated byH are
measurable.

Given the above premises, the following is the key definitionthat characterizes the reproducing
kernel Hilbert spaces which are able to separate thelargestfamily of subsets ofX .

Definition 2 (Completely Regular RKHS). A reproducing kernel Hilbert spaceH with reproducing
kernelK such thatKx 6= Kt if x 6= t is called completely regular ifH separates all the subsets
C ⊂ X which are closed with respect to the metric(2).

The termcompletely regularis borrowed from topology, where a topological space is called com-
pletely regular if, for any closed subsetC and any pointx0 /∈ C, there exists a continuous functionf
such thatf(x0) 6= 0 andf(x) = 0 for all x ∈ C. In the supplementary material, several examples of
completely regular reproducing kernel Hilbert spaces are given, as well as a discussion on how such
spaces can be constructed. A particular case is whenX is already a metric space with a distance

1Considering complex valued RKHS allows to use the theory of Fourier transform and for practical prob-
lems we can simply consider real valued kernels.
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functiondX . If K is continuous with respect todX , the assumption of complete regularity forces
the metricsdK anddX to have the same closed subsets. Then, the supports defined bydK anddX

are the same. Furthermore, since the closed sets ofX are independent ofH, the complete regularity
of H can be proved by showing that a suitable family ofbump2 functions is contained inH.
Corollary 1. LetX be a separable metric space with respect to a metricdX . Assume that the kernel
K is a continuous function with respect todX and that the spaceH separates every subsetC which
is closed with respect todX . Then

(i) The spaceH is separable andK is measurable with respect to the Borelσ-algebra gener-
ated bydX .

(ii) The metricdK defined by(2) is equivalent todX , that is, a set is closed with respect todK

if and only if it is closed with respect todX .

(iii) The spaceH is completely regular.

As a consequence of the above result, many classical reproducing kernel Hilbert spaces are com-
pletely regular. For example, ifX = Rd andH is the Sobolev space of orders with s > d/2, thenH
is completely regular. This is due to the fact that the space of smooth compactly supported functions
is contained inH. In fact, a standard result of analysis ensures that, for anyclosed setC and any
x0 /∈ C there exists a smooth bump function such thatf(x0) = 1 and its support is contained in
the complement ofC. Interestingly enough, ifH is the reproducing kernel Hilbert space with the
Gaussian kernel, it is known that the elements ofH are analytic functions, see Cor. 4.44 in [19].
ClearlyH can not be completely regular. Indeed, ifC is a closed subset ofRd with not empty inte-
rior andf ∈ H is such thatf(x) = 0 for all x ∈ C, a standard result of complex analysis implies
thatf(x) = 0 for everyx ∈ Rd. Finally, the next result shows that the reproducing kernelcan be
normalized to one on the diagonal under the mild assumption thatK(x, x) 6= 0 for all x ∈ X .
Lemma 1. Assume thatK(x, x) > 0 for all x ∈ X . Then the reproducing kernel Hilbert space

with the normalized kernelK ′(x, t) =
K(x, t)

√

K(x, x)K(t, t)
separates the same sets asH.

Finally we briefly mention some examples and refer to the supplementary material for further de-

velopments. In particular, we prove that both the LaplaciankernelK(x, y) = e
−

‖x−y‖2√
2σ andℓ1-

exponential kernelK(x, y) = e
−

‖x−y‖1√
2σ defined onRd are completely regular for anyσ > 0 and

d ∈ N.

3 Spectral Algorithms for Learning the Support

In this section, we first discuss our framework and our main assumptions. Then we present the
proposed regularized spectral algorithms.
Motivated by the results in the previous section, we describe our framework which is given by a triple
(X, ρ, K). We consider a probability space(X, ρ) and a training setx = (x1 . . . , xn) sampled
i.i.d. with respect toρ. Moreover we consider a reproducing kernelK satisfying the following
assumption.
Assumption 1. The reproducing kernelK is measurable andK(x, x) = 1, for all x ∈ X . Moreover
K defines a completely regular and separable RKHSH.

We endowX with the metricdK defined in (2), so thatX becomes a separable metric space. The
assumption of complete regularity ensures that any closed subset is separated byH and, hence, is
measurable by Prop. 2. Then we can define the supportXρ of the measureρ, as the intersection of
all the closed setsC ⊂ X , such thatρ(C) = 1. ClearlyXρ is closed andρ(Xρ) = 1 (note that this
last property depends on the separability ofX , hence ofH).
Summarizing the key result in the previous section, under the above assumptions,Xρ is the one level
set of the functionFρ : X → [0, 1]

Fρ(x) = 〈PρKx, Kx〉 ,

2Given an open subsetU and a compact subsetC ⊂ U , a bump function is a continuous compactly sup-
ported function which is one onC and its support is contained inU .
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wherePρ is a short notation forPXρ
. SinceFρ depends on the unknown measureρ, in practice

it cannot be explicitly calculated. To design an effective empirical estimator we develop a novel
characterization of the support of an arbitrary distribution that we describe in the next section.

3.1 A New Characterization of the Support

The key observation towards defining a learning algorithm toestimateXρ it is that the projectionPρ

can be expressed in terms of the integral operator defined by the kernelK.
To see this, for allx ∈ X , let Kx ⊗ Kx denote the rank one positive operator onH, given by

(Kx ⊗ Kx)(f) = 〈f, Kx〉Kx = f(x)Kx f ∈ H.

Moreover, letT : H → H be the linear operator defined as

T =

∫

X

Kx ⊗ Kxdρ(x),

where the integral converges in the Hilbert space of Hilbert-Schmidt operators onH (see for example
[7] for the proof). Using the reproducing property inH [2], it is straightforward to see thatT is
simply the integral operator with kernelK with domain and range inH.
Then, one can easily see that the null space ofT is precisely(I − Pρ)H, so that

Pρ = T †T, (3)

whereT † is the pseudo-inverse ofT (see for example [9]). Hence

Fρ(x) =
〈

T †TKx, Kx

〉

.

Observe that in generalKx does not belong to the domain ofT † and, if θ denotes the Heaviside
function withθ(0) = 0, then spectral theory gives thatPρ = T †T = θ(T ). The above observation
is crucial as it gives a new characterization of the support of ρ in terms of the null space ofT and
the latter can be estimated from data.

3.2 Spectral Regularization Algorithms

Finally, in this section, we describe how to construct an estimatorFn of Fρ. As we mentioned above,
Eq. (3) suggests a possible way to learn the projection from finite data. In fact, we can consider the
empirical version of the integral operator associated toK which is simply defined by

Tn =
1

n

n
∑

i=1

Kxi
⊗ Kxi

.

The latter operator is an unbiased estimator ofT . Indeed, sinceKx ⊗ Kx is a bounded random
variable into the separable Hilbert space of Hilbert-Schmidt operators, one can use concentration
inequalities for random variables in Hilbert spaces to prove that

lim
n→+∞

√
n

log n
‖T − Tn‖HS = 0 almost surely, (4)

where‖·‖HS is the Hilbert-Schmidt norm (see for example [14] for a shortproof). However, in
generalT †

nTn does non converge toT †T since0 is an accumulation point of the spectrum ofT or,
equivalently, sinceT † is not a bounded operator. Hence, a regularization approachis needed.
In this paper we study a spectral filtering approach which replacesT †

n with an approximationgλ(Tn)
obtainedfiltering outthe components corresponding to the small eigenvalues ofTn. The functiongλ

is defined by spectral calculus. More precisely ifTn =
∑

j σjvj ⊗ vj is a spectral decomposition of
Tn, thengλ(Tn) =

∑

j gλ(σj)vj ⊗ vj . Spectral regularization defined by linear filters is classical in
the theory of inverse problems [9]. Intuitively,gλ(Tn) is an approximation of the generalized inverse
T †

n and it is such that the approximation gets better, but the condition number ofgλ(Tn) gets worse
asλ decreases. More formally these properties are captured by the following set of conditions.

Assumption 2. For σ ∈ [0, 1], let rλ(σ) := σgλ(σ), then

• rλ(σ) ∈ [0, 1], ∀λ > 0,
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• limλ→0 rλ(σ) = 1, , ∀σ > 0

• |rλ(σ) − rλ(σ′)| ≤ Lλ|σ − σ′|, ∀λ > 0, whereLλ is a positive constant depending onλ.

Examples of algorithms that fall into the above class include iterative methods– akin to boosting
gλ(σ) =

∑mλ

k=0
(1 − σ)k, spectral cut-offgλ(σ) = 1

σ
1σ>λ(σ) + 1

λ
1σ≤λ(σ), and Tikhonov regular-

izationgλ(σ) = 1

σ+λ
. We refer the reader to [9] for more details and examples, and, given the space

constraints, will focus mostly on Tikhonov regularizationin the following.
For a chosen filter, the regularized empirical estimator ofFρ can be defined by

Fn(x) = 〈gλ(Tn)TnKx, Kx〉 . (5)

One can see that that the computation ofFn reduces to solving a simple finite dimensional problem
involving the empirical kernel matrix defined by the training data. Towards this end, it is useful to
introduce the sampling operatorSn : H → Cn defined bySnf = (f(x1), . . . , f(xn)), f ∈ H,
which can be interpreted as the restriction operator which evaluates functions inH on the training set
points. The adjointS∗

n : Cn → H of Sn is given byS∗
nα =

∑n
i=1

αiKxi
, α = (α1, . . . , αn) ∈ Cn,

and can be interpreted as the out-of-sample extension operator. A simple computation shows that
Tn = 1

n
S∗

nSn andSnS∗
n = Kn is then by n kernel matrix, where the(i, j)-entry isK(xi, xj).

Then it is easy to see thatgλ(Tn)Tn = gλ(S∗
nSn/n)S∗

nSn/n = 1

n
S∗

ngλ(Kn/n)Sn, so that

Fn(x) =
1

n
kx

T gλ(Kn/n)kx, (6)

wherekx is then-dimensional column vectorkx = SnKx = (K(x1, x), . . . , K(xn, x)) . Note that
Equation (6) plays the role of a representer theorem for the spectral estimator, in the sense that it
reduces the problem of finding an estimator in an infinite dimensional space to a finite dimensional
problem.

4 Theoretical Analysis: Universal Consistency

In this section we study the consistency property of spectral estimators. All the proofs of this section
are reported in the supplementary material. We prove the results only for the filter corresponding to
the classical Tikhonov regularization though the same results hold for the class of spectral filters de-
scribed by Assumption 2. To study the consistency of the methods we need to choose an appropriate
performance measure to compareFn andFρ. Note that there is no natural notion ofrisk, since we
have to compute the functiononandoff the support. Also note that standard metric used for support
estimation (see for example [22, 5]) cannot be used in our analsys since they rely on the existence
of a reference measureµ (usually the Lebesgue measure) and the assumption thatρ is absolutely
continuous with respect toµ.
The following preliminary result shows that we can control the convergence of the Tikhonov esti-
matorFn, defined bygλ(T ) = (Tn + λnI)−1, to Fρ uniformly on any compact set ofX , provided
a suitable sequenceλn.

Theorem 1. LetFn be the estimator defined by Tikhonov regularization and choose a sequenceλn

so that

lim
n→∞

λn = 0 and limsup
n→∞

log n

λn

√
n

< +∞, (7)

then
lim

n→+∞
sup
x∈C

|Fn(x) − Fρ(x)| = 0, almost surely, (8)

for every compact subsetC of X

We add three comments. First, we note that, as we mentioned before, Tikhonov regularization
can be replaced by a large class of filters. Second, we observethat a natural choice would be the
regularization defined by kernel PCA [11], which corresponds to truncating the generalized inverse
of the kernel matrix at some cutoff parameterλ. However, one can show that, in general, in this case
it is not possible to chooseλ so that the sample error goes to zero. In fact, for KPCA the sample
error depends on the gap between theM -th and theM + 1-th eigenvalue ofT [1], whereM -th
andM + 1-th are the eigenvalues around the cutoff parameter. Such a gap can go to zero with an
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arbitrary rate so that there existsno choice of the cut-off parameter ensuring convergence to zero
of the sample error. Third, we note that the uniform convergence ofFn to Fρ on compact subsets
does notimply the convergence of the level sets ofFn to the corresponding level sets ofFρ, for
example with respect to the standard Hausdorff distance among closed subsets. In practice to have
an effective decision rule, an off-set parameterτn can be introduced and the level set is replaced by
Xn = {x ∈ X | Fn(x) ≥ 1 − τn} – recall thatFn takes values in[0, 1]. The following result will
show that for a suitable choice ofτn the Hausdorff distance betweenXn ∩ C andXρ ∩ C goes to
zero for all compact setsC. We recall that the Hausdorff distance between two subsetsA, B ⊂ X is

d
H

(A, B) = max{sup
a∈A

dK(a, B), sup
b∈B

dK(b, A)}

Theorem 2. If the sequence(τn)n∈N converges to zero in such a way that

lim sup
n→∞

supx∈C |Fn(x) − Fρ(x)|
τn

≤ 1, almost surely (9)

then,
lim

n→+∞
d

H
(Xn ∩ C, Xρ ∩ C) = 0 almost surely,

for any compact subsetC.

We add two comments. First, it is possible to show that, if the(normalized) kernelK is such that
limx′→∞ Kx(x′) = 0 for anyx ∈ X – as it happens for the Laplacian kernel, then Theorems 1
and 2 also hold by choosingC = X . Second, note that the choice ofτn depends on the rate of
convergence ofFn to Fρ which will itself depend on some a-priori assumption onρ. Developing
learning rates and finite sample bound is a key question that we will tackle in future work.

5 Empirical Analysis

In this section we describe some preliminary experiments aimed at testing the properties and the
performances of the proposed methods both on simlauted and real data. Again for space constraints
we will only discuss spectral algorithms induced by Tikhonov regularization. Note that while com-
putations can be made efficient in several ways, we consider asimple algorithmic protocol and leave
a more refined computational study for future work. Following the discussion in the last section,
Tikhonov regularization defines an estimatorFn(x) = kx

T (Kn + nλI)−1
kx and a point is labeled

as belonging to the support ifFn(x) ≥ 1 − τ . The computational cost for the algorithm is, in the
worst case, of ordern3, like standard regularized least squares, for training andorderNn2 if we
have to predict the value ofFn atN test points. In practice, one has to choose a good value for the
regularization parameterλ and this requires computing multiple solutions, a so calledregularization
path. As noted in [13], if we form the inverse using the eigendecomposition of the kernel matrix the
price of computing the full regularization path is essentially the same as that of computing a single
solution (note that the cost of the eigen-decomposition ofKn is also of ordern3 though the constant
is worse). This is the strategy that we consider in the following. In our experiments we consid-
ered two data-sets the MNIST data-set and the CBCL face database. For the digits we considered
a reduced set consisting of a training set of 5000 images and atest set of 1000 images. In the first
experiment we trained on500 images for the digit3 and tested on200 images of digits3 and8. Each
experiment consists of training on one class and testing on two different classes and was repeated
for 20 trials over different training set choices. The performance is evaluated computing ROC curve
(and the corresponding AUC value) for varyingτ, τ ′, τ

′′
. For all our experiments we considered the

Laplacian kernel. Note that, in this case the algorithm requires to choose3 parameters: the regular-
ization parameterλ, the kernel widthσ and the thresholdτ . In supervised learning cross validation
is typically used for parameter tuning, but cannot be used inour setting since support estimation is
an unsupervised problem. Then, we considered the followingheuristics. The kernel width is cho-
sen as the median of the distribution of distances of theK-th nearest neighbor of each training set
point for K = 10. Fixed the kernel width, we choose regularization parameter in correspondence
of the maximum curvature in the eigenvalue behavior– see Figure 1, the rational being that after this
value the eigenvalues are relatively small. For comparisonwe considered a Parzen window density
estimator and one-class SVM (1CSVM )as implemented by [6]. For the Parzen window estimator
we used the same kernel used in the spectral algorithm, that is the Laplacian kernel and use the
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Figure 1: Decay of the eigenvalues of the kernel matrix ordered in decreasing magnitude and corre-
sponding regularization parameter (Left) and a detail of the first50 eigenvalues (Right).

same width used in our estimator. Given a kernel width an estimate of the probability distribution
is computed and can be used to estimate the support by fixing a thresholdτ ′. For the one-class
SVM we considered the Gaussian kernel, so that we have to fix the kernel width and a regularization
parameterν. We fix the kernel width to be the same used by our estimator andfixed ν = 0.9. For
the sake of comparison, also for one-class SVM we considereda varying offsetτ

′′
. The ROC curves

on the different tasks are reported (for one of the trial) in Figure 2, Left. The mean and standard
deviation of the AUC for the 3 methods is reported in Table 5. Similar experiments were repeated
considering other pairs of digits, see Table 5. Also in the case of the CBCL data sets we considered
a reduced data-set consisting of472 images for training and other472 for test. On the different test
performed on the Mnist data the spectral algorithm always achieves results which are better- and
often substantially better - than those of the other methods. On the CBCL dataset SVM provides the
best result, but spectral algorithm still provides a competitive performance.

6 Conclusions

In this paper we presented a new approach to estimate the support of an arbitrary probability distri-
bution. Unlike previous work we drop the assumption that thedistribution has a density with respect
to a (known) reference measure and consider a general probability space. To overcome this prob-
lem we introduce a new notion of RKHS, that we call completelyregular, that captures the relevant
geometric properties of the probability distribution. Then, the support of the distribution can be
characterized as the null space of the integral operator defined by the kernel and can be estimated
using a spectral filtering approach. The proposed estimators are proven to be universally consistent
and have good empirical performances on some benchmark data-sets. Future work will be devoted
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Figure 2: ROC curves for the different estimator in three different tasks: digit9vs4 Left, digit 1vs7
Center, CBCL Right.

3vs8 8vs3 1vs7 9vs4 CBCL
Spectral 0.8371 ± 0.0056 0.7830 ± 0.0026 0.9921 ± 4.7283e − 04 0.8651 ± 0.0024 0.8682 ± 0.0023

Parzen 0.7841 ± 0.0069 0.7656 ± 0.0029 0.9811 ± 3.4158e − 04 0.0.7244 ± 0.0030 0.8778 ± 0.0023

1CSVM 0.7896 ± 0.0061 0.7642 ± 0.0032 0.9889 ± 1.8479e − 04 0.7535 ± 0.0041 0.8824 ± 0.0020

Table 1: Average and standard deviation of the AUC for the different estimators on the considered
tasks.
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to derive finite sample bounds, to develop strategies to scale-up the algorithms to massive data-sets
and to a more extensive experimental analysis.
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