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Abstract

Histograms of orientations and the statistics derived
from them have proven to be effective image representations
for various recognition tasks. In this work we attempt to im-
prove the accuracy of object detection systems by including
new features that explicitly capture mid-level gestalt con-
cepts. Four new image features are proposed, inspired by
the gestalt principles ofcontinuity, symmetry, closure and
repetition.

The resulting image representations are used jointly with
existing state-of-the-art features and together enable bet-
ter detectors for challenging real-world data sets. As base-
line features, we use Riesenhuber and Poggio’s C1 features
[15] and Dalan and Triggs’ Histogram of Oriented Gra-
dients feature [5]. Given that both of these baseline fea-
tures have already shown state of the art performance in
multiple object detection benchmarks, that our new mid-
level representations can further improve detection results
warrants special consideration. We evaluate the perfor-
mance of these detection systems on the publicly available
StreetScenes [27] and Caltech101 [11] databases among
others.

1. Introduction

Computational approaches to perceptional tasks, visual
and otherwise, can be divided into two components: repre-
sentation of the input signal, and learning, e.g., optimiza-
tion, modeling, or estimation. Generally, the systems with
the best performance use standard learning techniques, and
the key to their effectiveness is either a very large training
set, or an effective signal representation.

For visual problems, a wealth of image representations
have been proposed in the literature, but recently, with the
emphasis on performance, there has been a rapid conver-
gence into two prominent approaches: patch similarities,
and edge orientation statistics. It is clear that these represen-
tations do not explicitly capture more intricate, high level

concepts, which may be critical to the subsequent learning
stages.

Our goal is to implement a few mid-level image repre-
sentations based on Gestalt principles. If these new fea-
tures discriminate between examples of object and non-
object in new ways, then we can expect performance gains.
This performance constraint is critical; the literature has
many examples of symmetry detectors, saliency detectors
and other mid-level features,e.g., [14]. However, few have
been shownto addto the discriminative power of a state-of-
the-art detection system. The task of creating Gestalt-based
features that improve upon cutting-edge descriptors remains
mostly unexplored. We make no claims that our implemen-
tations are the best or only way to capture the target Gestalt
concepts, only that they provide information which the clas-
sifier can then leverage.

Computationally, the implementation of these new fea-
tures resembles the generalized Hough transform, but there
are many significant differences, such as replacing summa-
tions with morphological operations. The importance of
these non-linearities will be addressed in the experiments.
Also, in the classical generalized Hough transform, thresh-
olding is used to detect salient image structures. Instead,
we pass a version of the voting space directly to the clas-
sifier. This design methodology will be elaborated as the
paper progresses.

In each of Sections3 through5, we describe a new fea-
ture, describe its properties, and then evaluate the perfor-
mance of the feature. Performance improvements on the
Caltech 101-objects database in described in Sec.6.

2. Current state of the art image features

Statistical learning methods require that images must
first be converted into a mathematical object, some vector in
ℜn. A wide variety of image representations have been used
in the past, including grayscale pixel values, wavelet coeffi-
cients, linear projections (i.e., PCA, LDA and variants), and
many others. Each has strengths and weaknesses for certain
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object types and modes of invariance. Two categories of
image features currently dominate the object detection lit-
erature:histograms of edge orientations, andpatch based
features.

Histogram of edge orientations.This increasingly pop-
ular type of representation has demonstrated good discrim-
inative power for many types of objects and tolerance for
several common image transformations. It can be described
as a weighted histogram wherein each histogram bin col-
lects votes from gradients near particular locations and par-
ticular orientations. Examples include Lowe’s SIFT [12],
Riesenhuber and Poggio’s C1 [15], Malik’s geometric blur
and shape context [2, 1], and Dalal and Triggs’ HoG [5].

The SIFT feature, described in detail in [12], was de-
signed to be used in concert with an interest operator in or-
der to find correspondences in images of thesameobject
under different lighting and view angles. It therefore pos-
sesses several properties that make it suboptimal forgeneric
object recognition. It was noted in [12] that the SIFT feature
is a general framework, and its parameters can be modified
to suit individual tasks. This was done in [5], where the
Histogram of Gradients feature(HoG) was introduced and
shown to be much more suitable for generic object recogni-
tion.

In the HoG, the best results for a pedestrian detection
task were obtained with one bin per8 pixels in either spa-
tial direction, and four or more orientations uniformly dis-
tributed from0◦ − 180◦ (using rectified orientations). The
magnitudes of the brightness gradient at each pixel are
added to the appropriate histogram bins using linear inter-
polation between the nearest eight bin centers in location
and orientation. Finally, a normalization step is applied.
The performance of the HoG feature over a wide variety of
parameters, histogram structures, and normalization tech-
niques, is explored in [5]. In our experiments we use the
version with the optimal set of parameters.

The C1 feature [15, 18] stems from a model of biolog-
ical vision. In C1, the histogram bins are replaced by the
concept of cells. Each cell computes a function of the ori-
ented filter responses within its predefined receptive field,
but, rather than each cell accumulating the associated re-
sponses into a sum, as in HoG or SIFT, only the maximum
response is recorded.

The image features described above share more in com-
mon than they differ. At the most basic level, each element
of each feature vector simply encodes a statistic of a partic-
ular oriented filter response within a predefined receptive
field. This makes these features good for describing the
gross pattern of orientations within the image. However,
they do not make explicit potentially useful higher level in-
formation, such as long range correlations of oriented re-
sponses.

Patch based featuresAlong with local histograms of

orientations, patch based features, too, have gained popu-
larity in the computer vision community. A patch based
feature vector is an image description which depends on
comparing the image with set of stored image crops, also
known as templates or fragments. Common examples of
patch based image descriptors include those of Ullman and
Sali [22], Freeman [21], and Liebe and Scheile [10]. Differ-
ent implementations select different balances between in-
variance and the representation of geometric structure. It
has been shown that patch based approaches can perform
significantly better than detection via a single template, but
they are still limited in representative power by the underly-
ing measurement used to compare the image with the stored
prototype.

3. Continuity based image descriptors

The detection of continuous edges has long been a fo-
cus of the vision community, having been a topic of dis-
cussion in studies of saliency, segmentation, and boundary
detection, e.g., [19, 9], etc. Even the venerable Canny edge
detection system [4] presupposes a notion of continuity to
justify the use of two different thresholds and a hysteresis
based detection scheme. While many modern object detec-
tion systems use edge gradients as feature vector elements,
only a few, such as [14, 17, 6] have explicit encoding of the
presence or absence of long continuous edges. The develop-
ment our continuity feature was motivated by the need for
a representation of long contour representation suitable for
learning. We will show that performance can be improved
by including this featurealong withthe state-of-the-art fea-
tures mentioned in Sec.2.

The traditional approach to detecting continuous lines in
an image is to use the Hough transform. Gradient magni-
tudes are computed and thresholded at each pixel location,
creating a set of edge-candidates. Each candidate is then
mapped into the space of line parameters(d, slope), where
d is the distance from the line to some predetermined point
in the image, often the center.

It would certainly be possible to then take the descretized
parameter voting space, and use it directly as an image fea-
ture. This is unsatisfactory for several reasons, including
the inability to represent lines of different lengths and that a
horizontal line at the top of the image would have the exact
same representation as a horizontal line at the bottom. The
feature we propose below aims to address these issues.

Given an input image I, apply the following procedure:
For eachθ ∈ {0◦, 45◦, 90◦, 135◦}, repeat steps 1-4 below:
1. Image rotation:Rotate the image by an angle ofθ. �θ
2. Initial filter: Take the absolute derivative of I in thex direction. |Ix(x, y)|
3. Perform the following sequence of morphological operators onIx :

a. Local minimization with a kernel of length 7 in thex direction. ⊖(7, 1)
b. Local maximization with a kernel of size(x, y) = 7 × 3. ⊕(7, 3)
c. Perform a2 × 2 subsumpling. ↓ (2, 2)

4. Repeat step 3for i = 1 . . . 6 using3c as input, record result of all repeats. Rθ,i(x, y)

Figure 1. Pseudocode for the Continuity descriptor. In the real
implementation the filters and not the image are rotated.



Continuity Computation

Iterative Local Maximum

Figure 2.(Please view in color): Top: An illustration of the conti-
nuity computation. After the original image, different colors indi-
cate different orientations of contours, red is vertical, etc. Deeper
color saturation indicates stronger contour evidence. Note that as
the computation proceeds, the texture is filtered away and only the
correct tint of the long contour remains.Bottom: If instead we it-
eratively take local maximums in the orientation space, the result,
as shown here, is that all strong signals are spread out, no matter
their local support. Since filters at many orientations are stimu-
lated by strong edges, all orientations are strongly stimulated near
the border of the bear.

3.1. The min-max continuity descriptor

In Fig.1, we briefly describe the algorithm used to calcu-
late the image continuity features. Matlab code is provided
in the CVPR digital addendum. The computation consists
of first filtering the image with oriented filters, rectifyingthe
output, and then processing with alternating local dilation
and erosion steps with orientation-specific kernels. Finally,
the image is decimated to half resolution. This constitutesa
round of processing, and each round defines a discrete step
in a scale space of continuous contours. Representations
of longer contours are found as co-linear concatenations of
shorter contours. The output of this processing is a feature
vector in which each element is sensitive to contours of a
certain length, orientation, and spatial location, while being
tolerant to some variability in each of these dimensions.

Intuitively, the erosion step only leaves a strong response
if all edge elements along a contour are strong, and then the
maximum filter propagates that signal to the neighborhood.
It is important to note that the kernel of the dilation opera-
tor is wider than that of the erosion operator in order detect
straight edges which are not precisely at the represented ori-
entations, and edges which slowly curve.

For illustration, Fig.2 depicts our continuity operator ap-
plied to an image of a bear: different colors indicate dif-
ferent contour orientations and intensity indicates contour
strength. Note that long continuous contours become en-
hanced and remain represented through gross image down-

sampling. Also note that dilation alone will not preserve
contour orientation, as noisy edge elements cause strong
contour detections in all orientations.

3.2. Experimental validation

The utility of the continuity feature in object detection
tasks is demonstrated in three separate object detection ex-
periments. In each, an existing system is improved by
adding the continuity features to the existing feature pool.
The first experiment demonstrates improved results in de-
tecting cars, pedestrians, and bicycles in the StreetScenes
[27] database. The second experiment involves discrimi-
nating images which contain an animal from those which
do not, where the animal may be at any scale or position
within the image, without windowing. Finally, improved
results are demonstrated on a three-class database consist-
ing of low-resolution images of cars, mid-size vehicles, and
trucks.

Object detection with no clutter For this experiment,
we use the StreetScenes data set [27], discriminating cars,
pedestrians and bicycles from background. The objects in
the positive data are standardized in terms of position and
scale within the images. The background class consists
of image crops known not to contain any of these object
types. We should note that this is a difficult task owing to
the large amount of internal class variability. For instance,
the car data set includes vehicles of many different types,
from small coupes to large busses, and at many different
poses. Example images are shown in Fig.3. Note that the
performance measures are made on predefined crops from
these larger images, and multiple train-test splits are used.
The data set contains includes 5,001 cars, 1,449 pedestrians,
and 209 bicycles. Random splits included2
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of examples for

training and1

3
for testing.

In [25] it was shown that, for these three data sets, the
C1 features exhibit outperform several other state-of-the-art
feature sets, notably, the two systems described by Torralba
and Leibe in [21] and [10]. We therefore compare only to
the C1 features1 and to the similarly successful HoG fea-
ture set. The relative performance of these two feature sets
depends on which object is used in the test.

For both features, significant performance improvement
is seen when the continuity features are included in addi-
tion. In table1 the performance of these classifiers both
with and without the additional continuity features is listed.
These statistics were collected by randomly splitting the
data into training and testing100 times, training gentle-
Boost classifiers [7] until convergence and then recording
statistics of the resulting ROC curve on the test data. We
report the equal-error rate and the true-positive-rate when

1Code is available athttp://cbcl.mit.edu/software-datasets.
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Figure 3. Examples from some of the databases used to test the
new features.Top Left: An image humans classify easily as non-
containing-animal, but is difficult for the system of [18]. Bottom
Left: 12 Examples of car vs. SUV vs. truck images from the car
database mentioned in Sec.3.2. Middle and Right: Examples of
the StreetScenes database images and corresponding labels [25].

the false-positive-rate= 1%, since the low-false-positive
region is more interesting for detection applications. It can
be seen that continuity features have significantly improved
the power of the classifier.2

Finally, to illustrate the necessity of the non-linear mor-
phological operations in the continuity operator, we include
the results of a more traditional linear version of the op-
erator in the same table. This operator uses conventional
oriented filters in the place of the morphological operations
(sums replace max and min). It can be seen that this linear
version helps the classifiers, but not nearly as much as the
algorithm described in Fig.1.

Animal detection in clutter In this experiment, the goal
is to discriminate between natural images which either do
or do not contain an animal. A database of1, 200 grayscale
images was provided for training and testing, as well as a
previous results for both humans (using a rapid exposure
setting), and an SVM based classifier operating on the neu-
romorphic features of [18]. The types of mistakes that the
machine would make that the human would not were typi-
cally false positives on urban scenes, such as that in the top
left of Fig. 3.

It should be noted that this is a difficult task, and the
provided system was already outperforming several state-
of-the-art benchmarks. A significant performance increase
in the area under ROC curve statistic, from71.4 ± 2.6%
to 74.2 ± 1.8% was noted when the SVM was trained on a
combined feature set consisting of the original features con-
catenated with the continuity features. The conclusion to be
drawn from these results is that the new features provide
additional information that was not immediately available
from the baseline features.

Car type identification The car type data set consists of
480 images of private cars,248 of mid-sized vehicles (such

2Results are similar with linear SVMs.

as SUV’s), and195 images of trucks. These are small20 ×

20 pixel images, collected using an automatic car detector
on a video stream taken from the front window of a moving
car. The task is to classify the three types of cars for a safety
application. Taking into account the low resolution and the
variability in the three classes, this is a difficult task (see
Fig. 3).

The protocol used in the experiments is as follows. In
each one of20 repeats,100 training images and95 testing
images were randomly drawn from each class. A multi-
class SVM was trained, and the average success rate along
with the standard deviation was reported. The gray-level
features score59.86% ± 3.35% on this three class prob-
lem, theC1 features score41.89% ± 3.62% and the con-
tinuity features score67.51% ± 2.92%. This success sup-
ports the postulation that classification is best performedon
this dataset by using long horizontal and vertical edges. We
also tried combining feature sets: gray-level combined with
C1 scores59.65%±4.24%, while gray-level and continuity
together scores the highest score among our experiments;
72.35% ± 2.47% correct.

4. Circularity and Form based descriptors
There is a well known result in studies of statistics of

natural images that, given the location of one oriented edge,
the most likely locations for another oriented edge are those
in which the two edges would have the property ofcocir-
cularity [8]. Similarly, in studies of saliency, it is known
that humans tend to group together edge elements which
form common forms such as circles or quadrilaterals [23].
In order to capture the notion of form in an explicit im-
age feature, we have developed the algorithm detailed in
Sec.4.1. We will show that this mid-level image feature
captures information about the image which is not imme-
diately available in other state-of-the-art image representa-
tions. It should be noted here that this feature, along with
the others, could be computed in many different ways. The
goal was to build an explicit representation of the existence
closed forms within the image, and not to segment out the
salient form or to find an optimum such representation.

4.1. The circle and form descriptor

Given an input image I, apply the following procedure:

1. Initial filter: For eachθ ∈ {0◦, 45◦, 90◦, 135◦}, D(x, y, θ) = |∇θ(I)|
2. Non-maximal suppression:if D(x, y, θ1) < D(x, y, θ2): setD(x, y, θ1) to 0
3. Initialize 4-D voting space to zero:H(x, y, θ, s) = 0

4. For each radiusr ∈ {21, 22, . . . , 25} and orientationθ:
a. Define an elongated gaussian shaped voting kernel:G(θ,r)

of size2r × 2r with a diagonal covariance matrix with values3r andr.
b. Rotate:G(θ,r) : by θ

c. Define the translation:tx = r × sin(θ) , ty = r × cos(θ)
d. Collect votes by convolving the voting kernel and translated filter response:

H(x, y, θ, r) = H(x, y, θ, r) + (G(θ,r) ⊛ D(x − tx, y − ty, θ))

H(x, y, θ, r) = H(x, y, θ, r) + (G(θ,r) ⊛ D(x + tx, y + ty, θ))

4. Maximal suppression:
if ∀θ2, H(x, y, θ1, r) ≥ H(x, y, θ2, r) then setH(x, y, θ1, r) to 0

5. Sum the voting matrixH over orientations
6. Reduce image resolution:using bilinear interpolation by a factor of 8

Figure 4. Algorithm to compute the circularity feature vector of an
image.



Figure 5.Left: An image of a common street scene with a car and
some buildings. White circles of radius 4, 8, and 16 have been
added artificially for illustrative purposes.Right-Top: The circle
feature output at several different radii.Right-Bottom:step4 has
been removed from the algorithm to make the computation similar
to the standard Hough transform.Note especially that the linear
version gives strong circle detections over the straight edges in the
telephone post, building, and car shadow. The non-linear version
does not. Note also that the detection of the car tires is obscured
by the car shadow edge in the linear version.

In Figs. 4 and 5 we describe in pseudo-code and di-
agrams the algorithm used to calculate the circle feature.
Each element in the vector output by this algorithm collects
the evidence that there is a convex form (circle, rectangle or
otherwise) of an approximate scale centered at an approxi-
mate(x, y) location in the image. The algorithm presented
here is in some ways similar to the generalized Hough trans-
form used to detect circles, though there are also distinct
differences. In the usual framework, boundary elements
“vote” in a non-parametric way into the circle-parameter
space. Similarly, in our system, each edge element spreads
its vote, modulated by the edge magnitude, into data struc-
ture indexed by(r, xc, yc), the postulated circle’s radius and
center. However, since our edge elements contain orienta-
tion information, they vote for circle-centers only if they
would be tangential that circle. A wide, elongated voting
kernel is used in order to represent shapes which are not
precisely circular and to prepare for the coarse descretiza-
tion necessary to restrict the feature vector length to a man-
ageable size.

In the usual Hough framework all edge elements vote
equally into the parameter space. The natural extension
would be to have all oriented edges contribute equally into
the parameter space, according to their magnitude. Instead,
for each point in the parameter space we remove all votes
from the strongest contributing orientation. This is done to
reduce the noise from long straight contours in the feature
which is meant to only represent closed forms. The effect is
that only forms with support from more than one orientation
are retained.

4.2. Experimental validation
Again we demonstrate performance on the data set pro-

vided to us by the authors of [25] by appending the baseline
features with the circularity features. As can be seen in table

1, for each object category, the inclusion of the circle fea-
tures significantly improves the detection score. An analysis
of statistical significance showed that the circularity feature
significantly improves detection for all three StreetScenes
object classes at p=.01.

In order to demonstrate the importance of the non-linear
sum-minus-maxstep, we also show the results of a similar
algorithm which does not remove the support from the dom-
inant orientation. For all three classes tested, the non-linear
circle representation is significantly more powerful. This
likely due to the superfluous form detections caused by the
prevalence of straight edges in the images, a feature which
is already captured in the baseline representation.

5. Repetition and Symmetry based image de-
scriptors

It has been shown that humans are adept at detecting
symmetry in natural images. As symmetry is a relatively
rare phenomenon in images, it is likely that it is a useful
cue in the detection of objects that exhibit symmetric char-
acteristics. A measure of symmetry is defined at a position
p, scales, and orientationθ in an image. Strong symme-
try at (p, s, θ) means that if we imagine a dividing line with
orientationθ passing throughp, the image on one side is in
some way similar to a reflection of the image on the other
side, at scales. Previous object detection studies studying
notions of symmetry include [16, 26, 13].

The notion of repetition is similar to symmetry but does
not require a reflection. Fig.7 illustrates the concepts of
repetition and symmetry as addressed in this text. Below we
will describe an image features to represent image repetition
and symmetry, and measure their utility in object detection.

5.1. The Symmetry Feature

The symmetry descriptor takes an input grayscale im-
age and outputs an explicit measure of mirror symmetry for
local regions within the image. Specifically, this operator
measures symmetry by looking for axes ofvertical mirror
symmetry. While we leave out many other types of sym-
metry, such as mirror symmetries at other axis, axial sym-
metry, etc., there is a great deal of evidence that humans
are far more sensitive to this type of symmetry than oth-
ers [24]. Briefly, our symmetry operator produces a feature
vector in which each element estimates a symmetry score
for a certain image position and scale. So that the number
of samples in the feature vector is small, each sample must
be tolerant to an appropriate range of positions and scales.

The algorithm, in pseudo-code, is listed in Fig.8. Fur-
thermore, in Fig.6, we show the results of the symmetry
detection algorithm on some test images. It is easy to see
that the symmetric structures are well represented by the
feature.



Figure 6. An illustration of the symmetry detection algorithm on
three test images. In the symmetry response images, (bottom),
brightness indicates strength and the color indicates the scale of
the detected symmetry, with blue representing smaller regions than
red (white regions have symmetry detected at all scales). The left-
most toy image contains three regions of perfect vertical symme-
try and three regions of perfect horizontal symmetry. The verti-
cal symmetries are strongly detected in the response images. The
symmetry of the car image is detected as a region of strong sym-
metry at the center of the image. As can be seen in the third col-
umn, random textures have little symmetry, and continuous lines
have symmetry at a small scale, but not larger.

The algorithm detects symmetry by accumulating evi-
dence from pairs of matching patches. Each patch is com-
pared to mirrored images of patches located across a posited
line of symmetry. By taking the maximum of the match
strength over a small pool of locations we build tolerance to
variations in the depth of the symmetric object and small
rotations of the symmetry axis. Afterwards, all match
strengths which would contribute to the same line of sym-
metry at the same location are summed. Thus, two mirror
patches near to the line of symmetry and a pair far from the
line of symmetry both contribute to the symmetric stimu-
lus. Finally, after accumulating evidences of symmetry at
all points within the image and at a discreet set of scales,
the data is reduced in such a way so as to retain the essential
qualities of the symmetric information, but fit within a fea-
ture vector of reasonable size. This is done through bilinear
resizing of the matrix after taking a local maximum, since
we are not concerned with the exact pixel location of the
line of symmetry so much as the fact that at least one strong
symmetry signal exists within reasonably sized region.

The symmetry feature is very expensive to compute, re-
quiring approximately80 seconds per128×128 image, us-
ing the implementation described here. This time can be cut
down significantly by calculating the patch matching scores
in grayscale, as opposed to an oriented filter space, although
this affects performance. The major cost is in computing the
matching scores for all the patches, so it is likely that the
speed can be improved greatly by using a form of approx-
imation, such as PCA, to rapidly compute the large matrix
S.

Given an input image I, perform the following algorithm
1 Initial filtering: Compute absolute derivatives of I in four orientations D(x, y, θ)

2 Loop over scales:For a discrete set of scalesσ ∈ {2
0
3 , 2

1
3 , ..., 2

15
3 }

a: LetD equalD resized by a factor ofσ in x andy D → D

b: Calculate Local similarities:∀{x, y, dy, dx}, dy ∈ {−7...7}, dx ∈ {0...25}

bi : Let P1 be the7 × 7 × 4 patch ofD centered at(x − dx, y)

bii : Let P2 be the7×7×4 patch ofD centered at(x+dx, y+dy)
biii :Let S(x, y, dx, dy) = NormCrossCorr(P1 ,mirror(P2)) S(x, y, dx, dy)

c: Half-wave rectifyS max(S, 0)
d: Retain only maximum ofS overdy S(x, y, dx)
e: Take sum ofS over alldx S(x, y)
f: ResizeS(x, y) to 128 × 128 and store as a layer ofG G(x, y, σ)

3 Reduce feature vector length:
a: Local min ofG(x, y, σ) with a kernel of size8 in y ⊖(1, 8, 1)
b: Local max ofG(x, y, σ) with a kernel of size8 in x ⊕(8, 1, 1)
c: Perform a8 × 8 subsampling in(x, y) ↓ (8, 8, 1)
d: Bilinearly resizeG(x, y, σ) to 16 × 16 × 4 ⇓

4. G(x, y, σ) is our 128 dimensional feature vector. G(x, y, σ)

mirror:
Given a multi-layer imageI(x, y, θ) where x ranges from0 to xmax ,
andθ ranges from0 to 180, the mirror imageÎ is defined asI(xmax −
x, y, 180 − θ).

Figure 8. Algorithm for computing image symmetry features. A
feature vector of reasonable length is computed from an image of
arbitrary size.

5.2. The Repetition Feature

Given an input image I, perform the following steps:
1. Initial filtering: Compute absolute derivatives of I in four orientations. D(x, y, θ)
2. Local similarities:Compute local similarities of every5×5×4 image S(x, y, dx, dy)

patch to all neightberhood patches of a distance4 ≤ dx, dy ≤ 25.
3. Perform the following sequence of morphological operators:

a. Local maximization with a kernel of size3 × 3 in (dx, dy) ⊖(1, 1, 3, 3)
b. Local summation with a kernel of size16 × 16 in (x, y).

∑
(16, 16, 1, 1)

c. Perform a8 × 8 subsampling in(x, y) . ↓ (8, 8, 1, 1)
d. Local maximization with a kernel of size7 × 7 in (dx, dy). ⊕(1, 1, 7, 7)
e. Perform a7 × 7 subsampling in(dx, dy) . ↓ (1, 1, 7, 7)

4. Obtain a 4D result. R(x, y, dx, dy)

Figure 7.Top: Algorithm for computing image repetition features.
Bottom: Examples of repeated (a–c) and symmetric (d–f) figures.

The algorithm to describe image repetition is detailed in
the pseudocode in Fig.7. This feature is designed to capture
whether or not there exists a consensus of relative locus of
similarity within spatial sub-regions of the image, i.e., if a
cluster of pixels all agree that they are similar to a certain
shifted sub-region of the image. First, the image is filtered
and rectified into a set of4 orientation images. In stage2,
each(5 × 5 × 4) image patch is compared to all patches of
a similar size within its neighborhood.L2 distances of the
edge-response patches is used as the similarity measure so
that edges only match similar magnitude edges of the same
orientation. In stage3 the local maximum of this similarity
measure within a(3 × 3) region of the relative transforma-
tion is taken in order to allow a small amount of distortion
in the relative location computation. Next, for each relative
location separately, a local sum is taken in the space of the
image plane. If a group of nearby patches agree that the
image is similar at this relative location, then the sum will
produce a peak at the center of the group.

Finally the data structure is appropriately subsampled.
This reduces the feature vector to a manageable size, and al-



lows tolerance to the exact location and nature of the repeti-
tion. The responses in the image plane are pooled by adding
them locally, in order to compute a consensus of similarity,
but the responses in the(dx, dy) direction are pooled by tak-
ing the maximum. The intuition behind this is that we are
only interested in the translation that gives the best evidence
of repetition, not in the average repetition over all transla-
tions.

5.3. Experimental validation

Referring once again to table1, we see that the addition
of the repetition and symmetry features enable the object
detectors to achieve significantly better results on all three
object databases. Note that if the dilation operations are
linearized, then the entire repetition-detection algorithm can
be collapsed into one sum on the original data structure, i.e.,
each feature would simply be the sum of a set of individual
patch similarities.

6. Experiments on the 101 objects dataset
A final supporting result is given on the popular 101

objects dataset [11]. The results reported here are the av-
erage and standard deviation, taken over all 101 classes
plus the background class, of the object recognition perfor-
mance obtained from20 independent trials. In each trial
15 random training and50 random testing images were se-
lected from each class, fewer testing images were used if
not enough were in the database. In the final score, all errors
are weighted such that each class has the same contribution
regardless of the number of the testing images. Note that
by using all of the testing images at once, one gets a much
better performance, due to the over-representation of some
easy classes. Therefore, to compare with previous results,
we use the15/50 protocol with re-weighting.

Using this protocol, Berg et al.[3] report45% correct de-
tections on thenon-duplicatedversion of the dataset. Serre
et al. [18], report an average performance of35% using
10, 000 “global” standard model C2 features, but using their
publicly available code, combined with a per-feature vari-
ance normalization step we were able to improve this per-
formance to36.86% ± 1.64% using only3, 000 such fea-
tures. (All of the results were obtained using a one vs. all
linear SVM).

Using the same splits, theC1 features gave30.93% ±

1.20% by themselves, and44.18% ± 0.76% when added
to the3, 000 C2 features. Continuity gave, when combined
with C2 44.59% ± 0.93%, and30.45 ± 0.34 by itself. Cir-
cularity gave, combined with C241.48%±0.52% ( 26.96±
0.88 alone). Repetition by itself received17.10%± 0.35%,
and did not help C2 (37.47 ± 1.05). All the features taken
together C2, C1, Continuity, Circularity and Repetition pro-
duced a score of48.26% ± 0.91, significantly higher than
the performance without the gestalt features. The additional
gain over a system which already performs well is valuable,

by the law of diminishing returns.

7. Conclusion
The novel features presented in this work collect image

information that is not necessarily concentrated in space
(HoG, SIFT, C1) or in scale (C1), but instead along other
modes of image structure. Evidence pooled along lines or
circular arrangements is combined to support hypotheses of
image structures that are unlikely to be coincidental. Patch-
based similarities are grouped according to spatial patterns
of similarity in order to build an effective representations of
repetition and symmetry.

The idea that more meaningful image representations
can produce significantly better recognition results is at-
tractive, but it is not trivial to demonstrate. In this work,
we revisit the principles that were used to build effective
histograms-of-orientations-based features and use them to
derive mid-level features. Histograms consisting of spatial
bins are used, just like in SIFT and HoG, and non-linearities
are employed in a way which is not unlike the maximization
in C1. Changing the details is what enables us to describe
mid-level concepts.

The four novel image statistics improve substantially
the performance of state-of-the-art detectors. The perfor-
mance gain is consistent across several challenging real
world datasets, indicating that the framework is not simply
noise.
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