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Abstract

In this paper we present a class of algorithms for similarity learning
on spaces of images. The general framework that we introduce is mo-
tivated by some well-known hierarchical pre-processing architectures for
object recognition which have been developed during the last decade, and
which have been in some cases inspired by functional models of the ven-
tral stream of the visual cortex. These architectures are characterized by the
construction of a hierarchy of “local” feature representations of the visual
stimulus. We show that our framework includes some well-known tech-
niques, and that it is suitable for the analysis of dynamic visual stimuli,
presenting a quantitative error analysis in this setting.



1 Introduction

During the last decade a great number of techniques have been proposed to
learn similarity measures. Instances include techniques which utilize clouds
of unlabelled input samples [24] [9] [4] [5], and techniques utilizing various
kinds of additional side information [6], as homonymous and heteronymous
example pairs [28] [3] [23] [7] [15] [20] [25], or invariances in pattern recognition
[11] [18] [19] [1] [26].

Some of this algorithms have been designed on the basis of physiological
and psychophysical evidence, trying to model the functional structure of pri-
mary visual cortex. In this paper we mainly refer to the algorithms of Serre
et al. [21] and of Mutch and Lowe [17], which in turn extend the model of
Riesenhuber and Poggio [19]. These are some of the most recent models which
attempt to describe in a quantitative way information processing in the ventral
stream of the visual cortex, and which include also convolutional networks [13]
and Neocognitrons [11].

All these models, starting from a image layer, successively perform the
computation of the “neural responses” in higher layers of the network, alter-
nating layers of “S” units and “C” units. This alternating structure is analo-
gous to the V1 simple and complex cells discovered by Hubel and Wiesel in
the late sixties [12]. Broadly speaking, the function of “S” units is to increase
selectivity relative to relevant variations of the input stimulus, while “C” units
increase the invariance with respect to translations and scalings.

More formally, the response Y of a simple “S” unit receiving the pattern of
“synaptic inputs” (X1, X2, . . . ) from the previous layer is given by

Y = exp

−λ∑
j

(Wj −Xj)2

 , (1)

where λ defines the sharpness of the tuning around the preferred stimulus of
the unit corresponding to the weight vector W = (W1,W2, . . . ).

Conversely, the “C” units are responsible for the pooling operation. That is,
the response Y of a complex unit corresponds to the strongest input Xj from
its afferents in the previous “C” layer

Y = max
j
Xj . (2)

The overall goal of the model is to increase feature invariance while main-
taining specificity using a multi-layer hierarchical architecture. Most notably,
models originally motivated by physiological and psychophysical evidence
have been proven extremely effective in pattern recognition tasks and in spe-
cific contexts comparable to state-of-the-art algorithms [22] [21].

In this paper we present a class of hierarchical algorithms for learning simi-
larities and invariances on spaces of images which, to some extent, generalizes
the type of algorithm described above.
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In Section 2 we formally introduce our framework. In Section 3 we show
how to draw a parallel between the framework and the models of the ventral
stream. In Section 4 we develop an error analysis in presence of dynamic visual
stimuli, and finally in Section 5 we describe in detail how to implement an al-
gorithm using samples from streams of images. All the proofs of the presented
results are collected in the Appendix.

2 The hierarchy of patches and the local feature map-
pings

The type of multi-layer architecture that we are going to describe is aimed at
associating to an “image” f ∈ Im(R) on the “retina” R ⊂ R2, an ensemble of
“local” feature representations φv(f). The “local” representation φv(f) takes
value on the separable Hilbert space Hv , and encodes information relative to
the properties of f over a small patch, or “receptive field”, v of R. The patches,
which we assume to be disks in R, are organized in layers according to their
size. The lower layer V (0) is a (finite) collection of disks in R of radius σ0, the
upper layer V (1) a (finite) collection of disks of radius σ1 > σ0 and so on up to
the uppermost layer V(K) containing one or more disks of radius σK , with

σ0 < σ1 < · · · < σK−1 < σK .

The layers of patches V (0), V (1), . . . , V (K) are equipped with a natural tree
structure. We say that a patch v in V (j) is a child of w in V (j+1), and we write
v ∈ Ch(w), whenever v ⊂ w. In the following we always assume that Ch(w) is
nonempty for every w ∈ V (j) and j > 0.

For sake of simplicity we also assume that the patches are evenly distributed,
in the sense that for every pair of patches v and v′ in V (j), there exists a transla-
tion of R2 which maps v onto v′, and every patch in the sub-tree of root v onto
a patch in the sub-tree of root v′.

The ground property of the feature representations φw(f) : Im(R) → Hw

is their hierarchical organization, in fact φw(f) depends on the image f only
through the feature representations φv(f) localized on the patches v in Ch(w).
The construction of the feature mapping φw from the mappings φv is conve-
niently implemented in various steps.

First, we define the direct sum

Hŵ =
⊕

v∈Ch(w)

Hv

the Hilbert space of “normalized” inner product

〈(h1, h2, . . . ), (h′1, h
′
2, . . . )〉ŵ =

1
|Ch(w)|

|Ch(w)|∑
i=1

〈hi, h
′
i〉vi
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where we have enumerated the patches {v1, v2, . . . } in Ch(w), and 〈·, ·〉v , 〈·, ·〉ŵ
denote the scalar products in Hv and Hŵ respectively. Hence the “child” map-
pings {φv|v ∈ Ch(w)} are stacked in the “direct sum” mapping φŵ : Im(R) →
Hŵ

∀f ∈ Im(R) φŵ(f) = (φv1(f), φv2(f), . . . ). (3)

Second, a linear operator Πw : Hŵ → Hŵ is constructed using available
sample data; we generally assume that Πw is bounded, symmetric and positive
semi-definite. In the following sections we will present two detailed examples
of such a construction (see Definitions 3.1 and 5.1).

Finally, given a positive constant λj+1 depending only on the depth j+1 of
the w’s layer, we postulate that for every pair of images f and f ′, the “parent”
mapping φw satisfies

〈φw(f), φw(f ′)〉w = exp
(
−λj+1 ‖Πw(φŵ(f)− φŵ(f ′))‖2

ŵ

)
(4)

In order to prove that Equation (4) defines Hw and φw up to isometries, we
need the following assumption on the space of images.

Hypothesis 2.1 We assume that Im(R) is a compact subset of L2(R, {−1, 1}), the
space of square-integrable functions on R taking values in {−1, 1}.

Using Hypothesis 2.1 we can prove the well-definiteness of φw.

Proposition 2.1 For every v ∈ Ch(w), let the separable Hilbert space Hv and the
continuous mapping φv : Im(R) → Hv be given. Let Πw be a bounded linear operator
on Hŵ. Then there exists a separable Hilbert space Hw and a continuous mapping
φw : Im(R) → Hw which fulfill Equation (4). Moreover for any other mapping φ′w :
Im(R) → H′

w fulfilling Equation (4) there exists a unitary operator U : Hw → H′
w

such that φ′w = U ◦ φw.

Note that the proof of Proposition 2.1 gives an explicit construction of φw as
the canonical embedding of Im(R) into the reproducing kernel Hilbert space of
kernel Kw(f, f ′) := 〈φw(f), φw(f ′)〉w given by Equation (4). For sake of sim-
plicity in the following we will often use the simplified notations dv(f, f ′) :=
φv(f)− φv(f ′) and dŵ(f, f ′) := φŵ(f)− φŵ(f ′).

We have seen that Equations (3) and (4) define the feature mappings on the
(j + 1)-st layer from feature mappings on the j-th layer, therefore in order to
implement a recursive construction we have to define the lowest layer’s feature
mappings. These mappings φv , for all v ∈ V (0), are naturally induced by
the L2 metrics on Im(R), we define Hv = L2(R, {−1, 1}) and φv the identity
mapping

∀f, f ′ ∈ Im(R) 〈φv(f), φv(f ′)〉v =
1

A(v)

∫
v

f(x)f ′(x)dx (5)
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where A(v) is the area of v. Note that since by Hypothesis 2.1 the images take
values in {−1, 1}, by Equations (4) and (5), for every patch v and image f it
holds

‖φv(f)‖v = 1.

So far we have briefly described the general recipe to construct the feature
mappings on the hierarchy of patches, in the following we will show how to
specialize this construction to two particularly interesting cases.

3 The “soft” model

In this section we show that the presented framework is suitable for the de-
scription of models similar to the one presented in the Introduction. At this
aim we proceed to the definition of the operator Πw for some w ∈ V (j + 1),
with 0 ≤ j ≤ K − 1. First we need to introduce a formal notion of “templates”:
a (finite) collection Tj of images in Im(R). Each image t ∈ Tj represents a basic
shape or “template” involved in the construction of the “neural responses” to
visual stimuli on the patchw. For example, templates relative to the layer j = 0
might be (as in [21]) simple oriented bars, while templates relative to deeper
layers might be complex combinations of oriented bars forming contours or
boundary conformations. We assume that the templates in Tj are normalized
and centered on an arbitrary reference patch v? ∈ V (j), and we also assume
without loss of generality that they take value 0 off this reference patch. There-
fore “templates” Hv(t) centered on general patches v ∈ V (j) are defined as
follows

(Hv(t))(x) =
{
t(hv(x)) x ∈ v,
0 x /∈ v,

where hv is the translation in R2 which maps v onto v?. We need the weak
technical assumption

Hypothesis 3.1 For every v ∈ V (j) and t ∈ Tj , the function Hv(t) belongs to
Im(R).

Hypothesis 3.1 is required in the definition of the operator Πw, which is
expressed in terms of the vectors φv(Hv(t)) with v ∈ Ch(w) and t ∈ Tj .

Definition 3.1 For every w ∈ V (j + 1), with 0 ≤ j ≤ K − 1, let Πw be the bounded
symmetric positive semi-definite operator on Hŵ, defined by

Π2
w = Av

t∈Tj

Q[Iŵ(t)] (6)

where the average Av is relative to the uniform probability measure on Tj , Hŵ 3
Iŵ(t) = ((φv1(Hv1(t)), φv2(Hv2(t)), . . . )), and Q[h] is the projection operator Q[h]u =
h 〈h, u〉ŵ.
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Note that Πw are bounded since∥∥Π2
w

∥∥ ≤ Av
t∈Tj

‖Q[Iŵ(t)]‖ = Av
t∈Tj

‖Iŵ(t)‖2
ŵ = Av

t∈Tj

Av
v∈Ch(w)

‖φv(Hv(t))‖2
v = 1.

From this Definition and Equations (3) and (4) it follows that identifying
a complex unit of layer j with a pair (w, t) ∈ Vj+1 × Tj , and denoting by f ∈
Im(R) the visual stimulus, the input to the unit can be represented by the vector
of components

Xv(C(w, t)) := Kv(f,Hv(t)) v ∈ Ch(w)

the unit executes a “soft” version of the pooling operation in Equation (2),
returning as output the average, rather than the maximum, of its inputs

Y (C(w, t)) := Av
v∈Chw

Xv(C(w, t)).

At the next stage the vector of components

Xt(S(w, t̃)) = Y (C(w, t)) t ∈ Tj

is elaborated by the simple unit of layer j + 1 represented by a pair (w, t̃) ∈
V (j+1)×Tj+1. The unit executes some function and outputs the result Y (S(w, t̃)).

Finally the outputs Y (S(w, t̃)) will serve as input components to the com-
plex unit of layer j + 1 parameterized by the pair (w̃, t̃) ∈ V (j + 2)× Tj+1 with
w̃ the parent of w

Xw(C(w̃, t̃)) = Y (S(w, t̃)) w ∈ Ch(w̃)

and so on.
The function executed by the simple unit S(w, t̃) is simply obtained using

Definition 3.1 and Equation (4), in fact we get

Y (S(w, t̃)) = Xw(C(w̃, t̃)) = Kw(f,Hw(t̃))
= exp

(
−λj+1

〈
φŵ(f)− φŵ(Hw(t̃)),Π2

w(φŵ(f)− φŵ(Hw(t̃)))
〉

ŵ

)
= exp

(
−λj+1 Av

t∈Tj

(
〈
φŵ(Hw(t̃)), Iŵ(t)

〉
ŵ
− 〈φŵ(f), Iŵ(t)〉ŵ)2

)
= exp

(
−λj+1 Av

t∈Tj

( Av
v∈Chw

(Kv(Hw(t̃),Hv(t))−Kv(f,Hv(t))))2
)

= exp
(
−λj+1 Av

t∈Tj

(Wt(S(w, t̃))−Xt(S(w, t̃)))2
)

with Wt(S(w, t̃)) the weight vector of the unit, defined by

Wt(S(w, t̃)) := Av
v∈Chw

Kv(Hw(t̃),Hv(t)) t ∈ Tj .

This last relations are analogous to Equation (1) in the Introduction
This connection with the usual formalism of the model of the ventral stream

shows that the framework presented in Section 2 is general enough to encom-
pass that type of algorithm. In Section 5 we will present a different choice for
the operators Πw, but first we give a quantitative error analysis for the general
algorithm in presence of dynamics of the input visual stimulus.

6



4 Dynamic visual stimuli and error analysis

The algorithms referred to in the Introduction were to some extent designed
on the basis of physiological and psychophysical evidence, trying to model the
functional structure of the primary visual cortex. These algorithms have been
proved competitive in terms of performance on a variety pattern recognition
applications, however so far no solid mathematical theory accounting for their
effectiveness is available. A tentative step in this direction has been proposed
by Földiak [10] and developed by Wiskott [27]. Theses authors start their anal-
ysis from the general principle of “slowness”, according to which the sensory
signals vary more quickly than their significance. In this perspective, the local fea-
ture representations would be able to filter out the “fast” components of the
input signals and retain the more significative “slow” components.

Recently, Maurer [16] by elaborating on this idea, developed a new di-
mensionality reduction technique based on hyperbolic-PCA [14]. In [16] the
time sequence of sensory signals is modelled by a stationary stochastic pro-
cess taking values over Im(R), and a projector on Im(R) is selected on the basis
of a criterion which rewards data-variance and penalizes abrupt changes of
the projected signal. Using a representation of finite dimensional projections
as bounded linear functionals on the space of Hilbert-Schmidt operators on
Im(R), [16] gives some PAC-type performance guarantees for the resulting feature
maps.

In this section we develop an error analysis for the performance of our hi-
erarchy of feature mappings based on the framework presented in [16].

The time evolution of the visual stimulus is modelled by a discrete-time sta-
tionary process taking values in Im(R)

F = {Fτ}τ∈Z

Here the integer τ represents time, and the stationarity assumption means that
for any δ, the shifted process Fδ = {Fτ+δ}τ∈Z has the same distribution has
F. We will often need to introduce random variables (r.v.) independent and
identically distributed (i.i.d.) with F, we denote these r.v. by F′ = {F ′

τ}τ∈Z.
We will also assume that the Hv-valued r.v. φv(F0) for all the patches v in

the layer V (j) are identically distributed up to isometry, in the sense that

Hypothesis 4.1 Let 0 ≤ j ≤ K, and v, v′ ∈ V (j). Then there exists an isometric
isomorphism U : Hv → Hv′ such that the random variables (φv(F0), φv(F1), . . . )
and (Uφv′(F0), Uφv′(F1), . . . ) are identically distributed.

Since in Section 2 we have already assumed that the patches are evenly
arranged, Hypothesis 4.1 essentially amounts to the assumption that the dis-
tribution of the visual stimuli restricted to some mask M ⊂ R is not affected
by translations of M . Under these hypothesis we can identify spaces Hv and
operators Πv relative to different patches v of the same layer.

We are now ready to introduce the pattern recognition tasks which will be
used in the assessment of the performance of our algorithms. We associate to
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every v ∈ V (j) a denumerable partition of Im(R)

Cv = {Cv(k)}k.

Different Cv(k) represent classes of images whose restrictions on v share the
same pattern or category. For example for v on a superficial layer (small j),
Cv might be a partition of Im(R) according to local properties (such as texture,
main directional orientation or color) within v. On the contrary on deeper lay-
ers (large j) Cv might represent some complex categorization of the image in v
(e.g. separating cats from dogs).

Broadly speaking the partition Cv codes the range of significance of a visual
stimulus at the characteristic spatial scale of the patch v ∈ V (j) (i.e. the radius
σj). According to the general principle that sensory signals vary more quickly than
their significance, we expect that within intervals of time-length τj characteristic
of the the layer j, the typical stimulus might be subject to considerable changes
but should persist within some fixed Cv(k). Following [16] we express this
believe by the following Hypothesis.

Hypothesis 4.2 For every 0 ≤ j ≤ K there exists a positive integer τj such that

∀k ∀A,B ⊆ Cv(k) P
[
Fτj

∈ B|F0 ∈ A
]
≥ P

[
Fτj

∈ B
]
.

It is intuitive that the larger is the spatial scale σj of a layer, the larger will
be the characteristic time of persistency τj (texture and color of a tiny detail
of an object may change rapidly while the object retain its overall identity).
Therefore we may expect the chain of inequalities

τ0 < τ1 < · · · < τK−1 < τK ,

for simplicity in Proposition 4.2 we will assume that τj+1 is a multiple of τj .
The main results of this section, Propositions 4.1 and 4.2, give bounds on the

error probability of a simple algorithm using the feature mapping φv to iden-
tify similarity or dissimilarity relations between couples of randomly drawn
images. Given a threshold parameter σ ∈ [0, 2], and two images f and f ′, the
algorithm compares the distance ‖dv(f, f ′)‖2

v over σ. If the distance is less than
σ the two images are identified as similar, otherwise they are classified as dis-
similar. The error probability is computed assuming that f and f ′ are drawn
independently from the distribution of F0. Therefore we define

Errv(σ) = P

[
‖dv(F0, F

′
0)‖

2
v < σ < (F0, F

′
0) ∈

⋃
k

Cv(k)× Cv(k)

]

The first result does not involve the hierarchical structure of the patches.
It shows that for a suitable value σ? of the threshold parameter σ, the error
Errv(σ?) is bound by a simple expression, Ěrrv , involving “variance” and “per-
sistency” on time-scale τj of the feature representation φv(f).
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Proposition 4.1 For every v ∈ V (j), define the quantities

εv =
∑

k

P [F0 ∈ Cv(k)]2 ,

and

σ∗ = 2

(
1 +

√
E [Kv(F0, F ′

0)]
E
[
‖dv(F0, Fτj )‖2

v

])−1

.

then it holds

Errv(σ∗) ≤ Ěrrv :=
(√

E [Kv(F0, F ′
0)] +

√
E
[
‖dv(F0, Fτj

)‖2
v

])2

− εv.

The term E
[
‖dv(F0, Fτj

)‖2
v

]
is related to the “persistency” of the feature

representation, its contribution to the error gets small when the map φv filters
out the features that typically vary on a interval of time-length τj or shorter. On
the other hand φv(f) should retain as much “information” as possible about f
in order to have large variance and small E [Kv(F0, F

′
0)] = 1 − Var(φv(F0)). It

is interesting to note that when φv is the ideal classifier

φv(f) = ek ⇔ f ∈ Cv(k)

where the vectors ek form an orthonormal system (that is 〈eh, ek〉v = δhk), then
E [Kv(F0, F

′
0)] = εv ; and if the categories Cv(k) are “persistent” (in the sense

that E
[
‖dv(F0, Fτj

)‖2
v

]
→ 0), then Ěrrv → 0 and our bound is tight.

The second result relates the value Ěrrw relative to the patch w ∈ V (j + 1)
and the value Ěrrv relative to the children patches v ∈ V (j). Note that by
Hypothesis 4.1 the quantities E [Kv(F0, F

′
0)] and E

[
‖dv(F0, Fτj

)‖2
v

]
depend on

v only through the depth of its layer, and therefore the same holds for the sum
Ěrrv + εv .

The increase of error rate from one layer to the next is expressed in terms of
the two parameters

aw(Πw) :=
E
[
‖Πwdŵ(F0, F

′
0)‖2

ŵ

]
E
[
‖dŵ(F0, F ′

0)‖2
ŵ

] bw(Πw) :=
E
[
‖Πwdŵ(F0, Fτj+1)‖2

ŵ

]
E
[
‖dŵ(F0, Fτj+1)‖2

ŵ

] (7)

which quantify the relative reductions of “variance” and “persistency” of
feature representations due to the action of an operator Πw.

Proposition 4.2 For every 0 ≤ j < K and w ∈ V (j + 1), let τj+1 be a multiple of
τj , Πw be a bounded symmetric positive semi-definite operator fulfilling

‖Πw‖ ≤ 1, (8)

and

λj+1 ≤
1

2bw(Πw)

(
τj
τj+1

)2

, (9)
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then for any v ∈ Ch(w)√
Ěrrw + εw ≤

√
Ěrrv + εv +

√
1− aw(Πw) + exp(−2λj+1). (10)

The previous Proposition gives a range of suitable values for the param-
eter λj+1, however in the light of the presented error bound, the best choice
corresponds to the minimum value of the inter-layer performance degradation
term

δw(Πw, λj+1) := 1− aw(Πw) + exp(−2λj+1), (11)

that is

λj+1 =
1

2bw(Πw)

(
τj
τj+1

)2

. (12)

Note that, since ‖Πw‖ ≤ 1, by Equations (7), aw(Πw) and bw(Πw) are num-
bers in the interval [0, 1]. The ideal choice of the operator Πw is the one which
minimizes the degradation term δw(Πw, λj+1) in the error bound, that would
correspond to bw(Πw) close to 0 (thorough filtering out of “fast” features) and
aw(Πw) close to 1 (retaining as much variance of the representation as possible).
In the next Section we will develop this criteria for the choice of the operators
Πw, giving an alternative to the option of Definition 3.1 in Section 3.

5 An algorithm for dynamic stimuli

Following the discussion at the end of the previous Section, we now proceed
to the presentation of an alternative to Definition 3.1 for the operator Πw. A
by-product of the proposed approach is a choice for the “tuning sharpness”
parameter λj+1. The Definition 5.1 for Πw and λj+1 below, follows naturally
from Proposition 4.2. Then in Proposition 5.1, under a suitable technical con-
dition, a spectral characterization of Πw is presented. This characterization is
expressed in terms of an unknown real parameter b and some averages w.r.t.
the stochastic process F. We conclude the Section with a discussion on how to
use the spectral characterization given in Proposition 5.1 to actually estimate
Πw from a finite set of sample images suitably sampled from F. We will not
attempt a quantitative assessment of the error introduced by this estimation
step from samples; some results in this direction can be found in [14] and [16].

The following Definition is directly motivated by the text of Proposition 4.2,
and it is aimed at improving the bound (10).

Definition 5.1 For every w ∈ V (j + 1), with 0 ≤ j ≤ K − 1, let Πw be a bounded
symmetric positive semi-definite operator on Hŵ, and λj+1 a positive number which
minimize the inter-layer performance degradation δw(Πw, λj+1) defined by Equation
(11), the minimization being subject to the constraints (8) and (9).
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We state below a result which gives a spectral characterization for the solu-
tion of the minimization problem stated in Definition 5.1.

Proposition 5.1 Let us assume that for some operator Πw defined according to Defi-
nition 5.1, it holds

b := bw(Πw) ≤ 1
2

(
τj
τj+1

)2

.

Moreover let us define the bounded symmetric positive semi-definite operators on Hŵ

Aw =
E [Q[dŵ(F0, F

′
0)]]

E
[
‖dŵ(F0, F ′

0)‖2
ŵ

] Bw =
E
[
Q[dŵ(F0, Fτj+1)]

]
E
[
‖dŵ(F0, Fτj+1)‖2

ŵ

]
where Q[h] is the projection operator Q[h]u = h 〈h, u〉ŵ, and introduce the functions

ϕ(x) = exp

(
− 1
x

(
τj
τj+1

)2
)

and

θ(x) =
{

1 x > 0
0 x ≤ 0.

Then the following pair fulfills Definition 5.1

Π̄w = θ(Aw − ϕ′(b)Bw), λ̄j+1 =
1
2b

(
τj
τj+1

)2

, (13)

where in the first expression, θ(·) is intended as a spectral function.

The main difficulty with the solution Π̄w given in Equation (13) above is
that it is expressed in terms of the eigensystem of the operator Aw − ϕ′(b)Bw,
with b an unknown parameter, andAw andBw defined as averages of functions
of the random variables F0, F ′

0 and Fτj+1 . However, in practice only a finite set
of empirical samples from these r.v. is available, and it is natural to replace the
expressions for Aw and Bw with suitable averages over the available empirical
samples.

We assume that n independent samples (f1, f ′1), (f2, f
′
2), . . . , (fn, f

′
n) of the

r.v. (F0, F
′
0) are available; these images play the role of dissimilar example

pairs. Moreover the n independent samples (fn+1, f
′
n+1), (fn+2, f

′
n+2), . . . , (f2n, f

′
2n)

of the r.v. (F0, Fτj+1) represent similar example pairs. Given these samples, the
operator θ(Aw − ϕ′(b)Bw) can be estimated by the empirical operator

θ

(
n∑

i=1

Q[dŵ(fi, f
′
i)]− α

2n∑
i=n+1

Q[dŵ(fi, f
′
i)]

)
, (14)

for some positive α.
Using this estimate for Πw an algorithm for the computation of the kernel

Kw from the kernels Kv on v ∈ Ch(w) is given by the following Proposition.

11



Proposition 5.2 Let Kw be the kernel defined by Equations (3) and (4) with Πw

given by Equation (14).
For all (f, f ′) and (g, g′) in Im(R)2, define

〈(f, f ′), (g, g′)〉 = Av
v∈Ch(w)

[Kv(f, g) +Kv(f ′, g′)−Kv(f, g′)−Kv(f ′, g)]

where the average is relative to the uniform probability measure on Ch(w).
Define the two 2n× 2n matrices G and P

Glm = 〈(fl, f
′
l ), (fm, f

′
m)〉 , Plm =

n∑
i=1

GliGim − α
2n∑

i=n+1

GliGim.

Finally denote by u1, . . . ,uN an orthonormal system of column eigenvectors of
G− 1

2 PG− 1
2 associated with positive eigenvalues, then for all (f, f ′) ∈ Im(R)2 it

holds

Kw(f, f ′) = exp

−λj+1

N∑
h=1

(
2n∑
i=1

(
G− 1

2 uh

)
i
〈(fi, f

′
i), (f, f

′)〉

)2
 .
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A Proofs

PROOF OF PROPOSITION 2.1:
For every f, f ′ ∈ Im(R) define

Kw(f, f ′) := exp
(
−λj+1 ‖Πw(φŵ(f)− φŵ(f ′))‖2

ŵ

)
.

Since by assumption Πw is bounded and φŵ is continuous, then Kw(f, f ′) is
continuous on Im(R)2. Moreover, since the Gaussian kernel is positive defi-
nite, then Kw(f, f ′) is a Mercer’s kernel ([2], [8]). Let Hw be the reproducing
kernel Hilbert space associated with the kernelKw, and define φw the canonical
embedding of Im(R) into Hw, that is

φw(f)(·) := Kw(f, ·).

Since, by Hypothesis 2.1, Im(R) is compact then Hw is separable. Moreover
φw(f) is continuous, since Kw is continuous and by the reproducing property

‖φw(f)− φw(f ′)‖2
w = Kw(f, f) +Kw(f ′, f ′)− 2Kw(f, f ′).

Finally φw(f) fulfills Equation (4), since by the reproducing property it holds

〈φw(f), φw(f ′)〉w = Kw(f, f ′).

This concludes the proof of existence of Hw and φw satisfying the conditions in
the text of the Proposition.

Now let us assume thatH′
w and φ′w is different solution. Then we can define

the unitary operator U on Range(φw) by

∀f ∈ Im(R) Uφw(f) = φ′w(f),

this is a good definition since by assumption

〈φw(f), φw(f ′)〉w = 〈Uφw(f), Uφw(f ′)〉w′ .

Finally, since Range(φw) generates Hw, we extend U to Hw by linearity.

PROOF OF PROPOSITION 4.1: For sake of simplicity we omit the pedex ·v from
most of the notation which follows (φ means φv , ‖·‖ means ‖·‖v , etc), we also
use the abbreviated notation ∆(f, g) := ‖dv(f, g)‖2

v . The indicator function of a
predicate p is denoted by 1{p}.
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Let us begin by estimating the rate of false positives∑
k

E [1{∆(F0, F
′
0) ≥ σ∗}1{(F0, F

′
0) ∈ Cv(k)× Cv(k)}] (15)

≤
∑

k

E
[
∆(F0, F

′
0)

σ∗
1{(F0, F

′
0) ∈ Cv(k)× Cv(k)}

]
≤ 1

σ∗

∑
k

E
[
∆(F0, Fτj

)1
{
(F0, Fτj

) ∈ Cv(k)× Cv(k)
}]

=
1
σ∗

E

[
∆(F0, Fτj

)1

{
(F0, Fτj

) ∈
⋃
k

Cv(k)× Cv(k)

}]

≤ 1
σ∗

E
[
∆(F0, Fτj )

]
where the first inequality follows from the inequality 1{∆(f, g) ≥ σ∗} ≤ ∆(f, g)/σ∗,
and the second inequality follows from Hypothesis 4.2, since for every nonneg-
ative function p = p(f, g) and every k it holds

E [p(F0, F
′
0)1{(F0, F

′
0) ∈ Cv(k)× Cv(k)}] ≤ E

[
p(F0, Fτj )1

{
(F0, Fτj ) ∈ Cv(k)× Cv(k)

}]
,

as it can be shown approximating p by simple functions.
Let us proceed estimating the rate of false negatives∑

k,l:k 6=l

E [1{∆(F0, F
′
0) < σ∗}1{(F0, F

′
0) ∈ Cv(k)× Cv(l)}] (16)

= E [1{∆(F0, F
′
0) < σ∗}] +

∑
k

E [1{∆(F0, F
′
0) ≥ σ∗}1{(F0, F

′
0) ∈ Cv(k)× Cv(k)}]− εv

≤ E [1{∆(F0, F
′
0) < σ∗}] +

1
σ∗

E
[
∆(F0, Fτj

)
]
− εv

≤ E
[
2−∆(F0, F

′
0)

2− σ∗

]
+

1
σ∗

E
[
∆(F0, Fτj

)
]
− εv

where for the first inequality we used (15), and for the second inequality the
bound 1{∆(f, g) ≤ σ∗} ≤ (2 − ∆(f, g))/(2 − σ∗), which holds because both
∆(f, g) and σ∗ are no greater than 2.

Finally, recalling the definition of Ěrrv , inequalities (15) and (16), and the
definition of σ∗

σ∗ = 2

1 +

√√√√ E [〈φ(F0), φ(F ′
0)〉]

E
[∥∥φ(F0)− φ(Fτj

)
∥∥2
]


−1

by substitution we get
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Errv(σ∗) ≤ 2− E [∆(F0, F
′
0)]

2− σ∗
+

2
σ∗

E
[
∆(F0, Fτj

)
]
− εv

=
2E [〈φ(F0), φ(F ′

0)〉]
2− σ∗

+
2E
[∥∥φ(F0)− φ(Fτj )

∥∥2
]

σ∗
− εv

=

(√
E [〈φ(F0), φ(F ′

0)〉] +
√

E
[∥∥φ(F0)− φ(Fτj

)
∥∥2
])2

− εv

= Ěrrv

which completes the proof.

PROOF OF PROPOSITION 4.2: We use the simplified notations aw := aw(Πw)
and bw := bw(Πw). From the definition of bw, Equation (9) and observing that,
by convexity, 1− exp(−z) ≤ z for every nonnegative z, we get

E
[∥∥φw(F0)− φw(Fτj+1)

∥∥2

w

]
= 2E

[
1− exp

(
−λj+1

∥∥Πw(φŵ(F0)− φŵ(Fτj+1))
∥∥2

ŵ

)]
≤ 2λj+1E

[∥∥Πw(φŵ(F0)− φŵ(Fτj+1))
∥∥2

ŵ

]
= 2λj+1bwE

[∥∥φŵ(F0)− φŵ(Fτj+1)
∥∥2

ŵ

]
= 2λj+1bwE


∥∥∥∥∥∥

τj+1/τj∑
i=1

(φŵ(F(i−1)τj
)− φŵ(Fiτj ))

∥∥∥∥∥∥
2

ŵ


≤ 2λj+1bw

(
τj+1

τj

)2

E
[∥∥φŵ(F0)− φŵ(Fτj

)
∥∥2

ŵ

]
= 2λj+1bw

(
τj+1

τj

)2

Av
v∈Ch(w)

E
[∥∥φv(F0)− φv(Fτj )

∥∥2

v

]
≤ Av

v∈Ch(w)
E
[∥∥φv(F0)− φv(Fτj

)
∥∥2

v

]
(17)

where the second inequality follows from the general property of Hilbert space
norms1 ∥∥∥∥∥

n∑
i=1

vi

∥∥∥∥∥
2

≤ n
n∑

i=1

‖vi‖2
,

1This property can be derived by induction on n. In fact from the inductive hypothesis we get∥∥∥∥∥
n∑

i=1

vi

∥∥∥∥∥
2

≤ (n − 1)

n−1∑
i=1

‖vi‖2 + ‖vn‖2 + 2

n−1∑
i=1

〈vn, vi〉 ≤
n∑

i=1

‖vi‖2 ,

which holds since
2 〈vn, vi〉 ≤ ‖vn‖2 + ‖vi‖2 .
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and the stationarity of the stochastic process F.
Observe that since

‖Πw‖ ≤ 1,

and by definition 〈φŵ(f), φŵ(g)〉ŵ ∈ [0, 1], it holds

‖Πw(φŵ(f)− φŵ(g))‖2
ŵ ≤ ‖Πw‖2 ‖φŵ(f)− φŵ(g)‖2

ŵ ≤ 2.

From the previous inequality and noticing that, for every z ∈ [0, Z] it holds
exp(−z) ≤ 1 + (exp(−Z)− 1)z/Z, we get

E [〈φw(F0), φw(F ′
0)〉w] = E

[
exp

(
−λj+1 ‖Πw(φŵ(F0)− φŵ(F ′

0))‖
2
ŵ

)]
≤ 1 +

1
2
(exp(−2λj+1)− 1)E

[
‖Πw(φŵ(F0)− φŵ(F ′

0))‖
2
ŵ

]
= 1 +

1
2
aw(exp(−2λj+1)− 1)E

[
‖φŵ(F0)− φŵ(F ′

0)‖
2
ŵ

]
= 1 + aw(exp(−2λj+1)− 1)

(
1− Av

v∈Ch(w)
E [〈φv(F0), φv(F ′

0)〉v]
)

≤ 1− aw + exp(−2λj+1) + Av
v∈Ch(w)

E [〈φv(F0), φv(F ′
0)〉v] (18)

where in the last inequality we used the fact that aw ∈ [0, 1]. In the following,
for sake of brevity, we use the notation δw := 1− aw + exp(−2λj+1).

Finally, by the definition of Ěrrw, equations (17) and (18), Hypothesis 4.1,
and the inequality

√
x+ y ≤

√
x+

√
y which hold for every nonnegative x and

y, we get

√
Ěrrw + εw =

√
E
[
〈φw(F0), φw(F ′

0)〉w
]
+
√

E
[∥∥φw(F0)− φw(Fτj+1)

∥∥2

w

]
≤

√
δw + Av

v∈Ch(w)
E
[
〈φv(F0), φv(F ′

0)〉v
]
+
√

Av
v∈Ch(w)

E
[∥∥φv(F0)− φv(Fτj

)
∥∥2

v

]
≤

√
δw +

√
E
[
〈φv(F0), φv(F ′

0)〉v
]
+
√

E
[∥∥φv(F0)− φv(Fτj )

∥∥2

v

]
=

√
δw +

√
(Ěrrv + εv)

which completes the proof.

PROOF OF PROPOSITION 5.1:
Let us start with some preliminary observations. First, notice that

aw(Π) = Tr
[
Π2Aw

]
bw(Π) = Tr

[
Π2Bw

]
.

Second, notice that Λ := Aw − ϕ′(b)Bw is symmetric and trace class since it is
the sum of two symmetric and trace class operators; let (λ+

i , ψ
+
i )i and (λ−i , ψ

−
i )i
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be the parts of Λ’s eigensystem with positive and negative eigenvalues respec-
tively. Third, let us introduce D, the set of symmetric positive semi-definite
operators on Hŵ with operator norm bounded by 1.

Now, since δw(Π, λ) is a strictly decreasing function of λ, Definition 5.1 im-
plies that Equation (12) holds and that Πw is a solution of the problem

max
[
Tr
[
Π2Aw

]
− ϕ(Tr

[
Π2Bw

]
)|Π2 ∈ D

]
. (19)

Moreover, by assumption, for the solution of this problem Πw in the text of the
Proposition, it holds Tr

[
Π2

wBw

]
= b, therefore λ̄j+1 defined in Equation (13)

and any solution of the problem

max
[
Tr
[
Π2Aw

]
|Tr
[
Π2Bw

]
= b,Π2 ∈ D

]
(20)

is a pair fulfilling Definition 5.1. We are left to prove that Π̄w defined in Equa-
tion (13) is a solution of (20).

In order to prove that Π̄w is a solution of (20), let us first observe that since
Πw in the text of the Proposition is a solution of (19) and D is convex, then for
all Π2 ∈ D and α ∈ [0, 1], for Π2

α := (1− α)Π2
w + αΠ2, it holds

Tr
[
Π2

wAw

]
− Tr

[
Π2

αAw

]
− ϕ(Tr

[
Π2

wBw

]
) + ϕ(Tr

[
Π2

αBw

]
) ≥ 0.

Dividing by α, and letting α go to 0, the previous relation becomes

∀Π2 ∈ D Tr
[
(Π2

w −Π2)Λ
]
≥ 0,

that is, Π2
w is a solution of

max
[
Tr
[
Π2Λ

]
|Π2 ∈ D

]
. (21)

Since for every Π2 ∈ D

Tr
[
Π2Λ

]
=
∑

i

λ+
i

〈
ψ+

i ,Π
2ψ+

i

〉
ŵ

+
∑

i

λ−i
〈
ψ−

i ,Π
2ψ−

i

〉
ŵ
≤
∑

i

λ+
i = Tr

[
Π̄2Λ

]
then Π̄2 is also a solution of problem (21), and

〈
ψ+

i ,Π
2
wψ

+
i

〉
ŵ

= 1,
〈
ψ−

i ,Π
2
wψ

−
i

〉
ŵ

=
0. From this conditions, the fact that ‖Πw‖ ≤ 1 and Cauchy−Schwarz inequal-
ity, it follows that Πwψ

+
i = ψ+

i and that if ψ0 ∈ Ker(Λ) then |
〈
ψ0,Π2

wψ
−
i

〉
ŵ
|2 ≤∥∥Πwψ

0
∥∥

ŵ

∥∥Πwψ
−
i

∥∥
ŵ

= 0. Therefore for some R ∈ D with Range(R) ⊆ Ker(Λ),
it holds

Π2
w = Π̄2 +R.

Now, since both Π2
w and Π̄2 are solutions of (21), then

Tr[AwR] = ϕ′(b)Tr[BwR]

and, since Π2
w is a solution of (19), then

Tr[AwR] ≥ ϕ(b)− ϕ(b− Tr[BwR]),
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which implies
ϕ(b) ≤ ϕ(b− Tr[BwR]) + ϕ′(b)Tr[BwR] .

However, since ϕ is strictly convex in

[
0,

1
2

(
τj
τj+1

)2
]

and by assumption b ≤

1
2

(
τj
τj+1

)2

, from the previous inequality it follows that Tr[BwR] = 0. This

means that Tr
[
Π̄2Bw

]
= b and Π̄2

w is a solution of (20) as claimed.

PROOF OF PROPOSITION 5.2:
Let (ψ1, ψ2, . . . , ψN ) be the system of eigenvectors of the operator

∑n
i=1 Q[dŵ(fi, f

′
i)]−

α
∑2n

i=n+1 Q[dŵ(fi, f
′
i)] associated to positive eigenvectors.

The projector Πw defined by Equation (14) is equal to
∑N

h=1 Q[ψi]; since it
is idempotent, Equation (4) becomes

Kw(f, f ′) = exp (−λj+1 〈dŵ(f, f ′),Πwdŵ(f, f ′)〉ŵ) (22)

= exp

(
−λj+1

∑
h

〈ψh, dŵ(f, f ′)〉2ŵ

)
.

Observe that by the definition of dŵ it holds

∀l,m Glm = 〈(fl, f
′
l ), (fm, f

′
m)〉 = 〈dŵ(fl, f

′
l ), dŵ(fm, f

′
m)〉ŵ .

Since the range of Πw is included in span{dŵ(fl, f
′
l )|1 ≤ l ≤ 2n} from the

equations
∀l,m Plm = 〈dŵ(fl, f

′
l ),Πwdŵ(fm, f

′
m)〉ŵ

we conclude that ψh =
∑2n

i=1

(
G− 1

2 uh

)
i
dŵ(fi, f

′
i).

The proposition follows by substituting this expression for ψh in Equation
(22).
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