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ABSTRACT Our algorithm thus finds the “best-fit” 2-D Gabor filter for
each patch, an analysis which we term Max-Gabor analysis.

1 our previous work [1], we also used a Max-Gabor analysis
for patch carrier estimation, but in this work we robustify i

We present a method that de-modulates a narrowband m
nitude spectrogrami(f, t) into a frequency modulation term

C.OS(¢(f’ t) Whlch.represents th.e underlying har_momc €a"use even further by estimating the carrier from pajcidi-
rier, and an amplitude modulation terd(f, ) which rep-
entsrather than from raw patch values.

resents the spectral envelope. Our method operates by per- . .
P P P Y PE™ 1 the second step of our algorithm, a local amplitude en-

forming a two-dimensional local patch analysis of the spec-

trogram, in which each patch is factored into a local carrieV€lopeA(f, t) for that patch is estimated using the local car-

term and a local amplitude envelope term using a Max-Gabar®" cos(¢(f,t)) obtained from the previous step. In prior
. . ; . work [1], we assumed that the ampltitude envelope was con-
analysis. We demonstrate the technique over a wide variet N i
. tant over the patch, which is clearly an inadequate assump-

of speakers, and show how the spectrograms in each case md

oh since amplitude modulations can vary significantlyhivit
be adequately reconstructed, 1) = A(f, t)cos(¢(f,t). a single patch. In this work, we estimate a smooth but non-

Index Terms— speech analysis, spectral analysis, timeconstant local ampltitude envelope for each patch using sca
frequency analysis, modulation tered data interpolation techniques.

We also demonstrate how to overlap-add the estimated lo-
cal patch carriers and envelopes to construct carriersand e
velopes for the entire spectrogram. Additionally, we demon
Strate how to obtain an estimate of the smooth phase surface
o(f,t) for the entire spectrogram. Finally, we demonstrate

S(f,t) = A(f,t)cos(o(f, 1)) (1)  how the spectrograms in each case may be adequately recon-
. ) structed asS(f,t) = A(f,t)cos(p(f,1)).
wherecos(¢(f,t)) is a 2D spectro-temporal modulation term It is instructive to note that prior work on AM-FM de-

representing the underlying harmonic carrier, atigl, 1) isa  moqylation of signals has been applied either to 1-D speech
2D amplitude modulation term representing the overall SPeGsignals [2], or to 2-D images [3] [4], but surprisingly never

tral envelope. In keeping with similar AM-FM approaches magnitude spectrograms! Additionally, these previousksor

used to model 1-D speech signals, we call this model a 2-Rg1y" o using either Kaiser-Teager energy separation algo-
AM-FM model of narrowband speech spectrograms.

v k Pett rithms [3] [2] or on analytic Hilbert computations [4] to de-
It is important in many speech applications to be able tqyqqy|ate the patch AM and FM componesisiultaneously
de-modulatgor separate, the spectrogram into separate AMyom all points in the patch. Instead, we rely on a simpler
and FM components, and we present such a method in thig,q_step algorithm which first estimates the FM carrier, and

work. Our method operates by performing a 2-D local patchpen estimates modulating AM envelope.
analysis of the spectrogram, in which small spectro-tempor  \ve discuss the individual steps of our algorithm in the
patches”(f,t) from the spectrogram are themselves individ-gactions below.
ually de-modulated into local patch carriers(¢(f,t)) and
local amplitude envelopes(f, £). 2. LOCAL CARRIER ESTIMATION

Our algorithm works in two steps: In the first step, the lo-
cal carriercos(¢( f,t)) within a patch is estimated. The basic
assumption made here is that the underlying carrier bellengs We define a family of spectro-temporal 2D Gabor carriers
a parameterized family of 2-D spectro-temporal Gabor §ilter C(f,¢) parameterized by spectro-temporal frequeRcgpectro-

1. INTRODUCTION

A particularly useful model of a narrowband magnitude spec
trogramS(f,t) is

2.1. 2D Gabor Carrier Family
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Fig. 1. Overview of AM-FM patch demodulation using Max-Gabor Aysas.

temporal orientatio®, and phas@ as:

C(f,t) =W(f,t) cos(2nFZ + @) 2)
where
I = tcosO + fsin®© )

andW (f,t) is a symmetric 2D Gaussian window.

the symmetry of the Fourier transform. We limit our analysis
in this paper to the magnitude spectrogram of each utterance
which we represent notationally &% f,¢). Additionally, we

limit our analysis to a linear frequency axis, deferringdeg
rithmic frequency analysis to future work.

2.3. Patch Extraction

2-D spectro-temporal Gabors look like sets of oriented

lines on the 2-D spectro-temporal plane, and as such are esp%t

cially well-suited to model harmonic carriers in speecheTh

parameterr' controls the spacing between the lines; the pa*

every grid point(i, j), we extract a patct®;; (f,¢) of the
spectrogram of sizéf and widthdt. The heightif and width
dt of the local patch are important analysis parameters: they

rameter© controls the orientation of the lines; the parametefMuSt be large enough to be able to resolve the underlying lo-

® controls the position of the lines within the local patctdgri
It is well-known [5] that the Fourier transform of a 2-D

Gabor looks like a pair of conjugate Gaussian “peaks”, whosé

distance from each other is proportionalfpand whose ori-
entation is proportional t®. As will be evident, Max-Gabor
analysis relies heavily on this fact in estimating the |quzetth
carrier. (This same fact was used independently by [6] fo
pitch-tracking).

It is highly instructive to re-write Equation 2 as

G(f7 t) = W(f7 t) ’ COS(¢(f7 t)) (4)

where

o(f,t) =2nFz+ @ (5)

represents &ocal planar phase surfaceorresponding to the
Gabor carrier. As we are interested in ultimately recomstru
ing our spectrograms, our AM-FM demodulation algorithm
must keep track of this phase surface across the spectrogr

Finally, we point out that, since magnitude spectrogram
are non-negative, all of our computations in Equations 2 or
involve rectifying the carriers by setting their negative com-
pononents to zero.

2.2. 1D STFT

al

cal dominant carrier, but small enough so that the undeglyin
signal is locally stationary. Suitable parameter rangesbar
5msec for thelt parameter, an600H = — 800H z for the

df parameter. Additional analysis parameters are the window
hopsizes in time\: and frequency\;j. Typically we setAs

to be 3-5ms and\; to 150-350Hz, which creates overlap be-
jween the patches.

2.4. Patch Gradients

For every patchP;;(f,t), we compute its spectral gradient

5;? and its temporal gradieﬁ% using simple local second-
order differences. As shown in Figure 1, computing gradi-
ents highlights the local edge detalils in the patch. Thanal

us to determine the underlying carriedependent of the lo-
cal patch ampltitude levelsThe spectral gradier%? high-
lights horizontal edges, which usually relate to speech har
monics, while the temporal gradie%2 hightlights vertical
ﬁgges, which usually relate to speech transients. Of cpurse
we are not just limited to taking vertical and horizontalider
ives, and one can imagine augmenting our analysis with a
whole bank of other directional derivative filters. However
for the sake of computational simplicity, we limit oursedve

in this work to horizontal and vertical gradient computato

2.5. 2D Local FFT

All of the 16KHz utterances we consider are first STFT an- o _
alyzed using a 25msec Hamming window with a 1ms framé® local 2D FFT analysis is then performed on patch gradi-

rate and a zeropadding factor of 4. This yields 1600 dimenents

6P¢j 6P¢j

and

57 s separately: First, we multiply each patch

sional STFT frames, which are truncated to 800 bins due tgradient by a 2D Gaussian winddwi ( f, t) of the same size



as the patch. Second, a 2-dimensional Fourier transform of ———— T ——
size Ny x Ny is performed on each windowed patch gradi- g———
ent to produce the local spectral-temporal gradient magdait *E= s = b_“ —
spectrum: — s N E
x I ST
Rij(Q ”Z S W) —5— Nu'e Nw
Finally, we sum the spectro-temporal gradient magnitude-sp :_- - -
trum for each patch gradient component to produce the total
combined magnitude spectrum for that patch: Fig. 2. Left column: Sample input patchés; (f,t), 2nd col-
f . umn: Estimated phase surfagg;(f,t), 3rd column: Esti-
Rij(Qw) = B (2, w) + By (2, w) 6)  mated carrieros(¢;;(f,t)), 4th column: Estimated ampli-

) , tude envelopel,;(f,t), Final column: AM-FM approxima-
Typical valuesNy and Ny, are 256 and 48 respectively. tion to each patchly; (f, t)cosq; (6(f, 1))
] ’ ] )

2.6. Maximum Peak Detection

Visual inspection ofR;;(2,w) for different patches reveals Given estimates?(i, j), ©(i, j), and®(;, j) for each patch,

that most of the spectra exhlblt a Gabor-like spectral struc we cl:an synthesize the local phase surfagg f, ¢) and the
ture. As shown in Figure 1, this is exemplified by the presenclipca carriercos(¢i; (f, ¢)) using Equation S.

of two dominant Gaussian-like peaks in the spectrum whose SNOWN |nle|gur|e 2 are exa(rj‘ane input ;?atchefs as V‘;]e” as
location we wish to identify. Additionally, a set of smaller € €stimated local carriers and phase surfaces for each.

similarly-oriented peaks exist because the magnitude SIFT 5 | 5cAL AMPLITUDE ENVELOPE ESTIMATION
non-negative. A host of other local peaks also emerge due to
noise in the patch. 3.1. Carrier Peak Detection and Input Patch Sampling

We use a simple peak-detection strategy to obtain &'set To estimate the local amplitude envelogg (f, ), the local
of candidate peak locations and values in the spectral nsspo carrier cos(¢;;(f,t)) is first thresholded for values greater
R;;(Q, w). We match the conjugate peak location€lwith  than 0.95. This yields a set of N locatiofig;, ¢;} Y, that
each other into pairs and throw out any peak candidates whigiepresent the locations of the carrier peaks. The inpuhpatc
do not have matching conjugate peaks. Finally, we choosg,;(f ¢) is thensampled at these locationgielding a set of
among the peak pairs in the €éthe one with the largest peak value-location tripled” = { Ay, fx, tk}{f:l_ The setV is fig-
value This pair will comprise our estimate for the underlying uratively shown in Figure 1 as the set of “X” marks on the

dominant Gabor carrier in the patch. right-hand side of the figure.

2.7. Local Carrier Parameter Estimation 3.2. Scattered Data Interpolation

The local carrier orientatio®(i, j) and frequencyF(i,j) A scattered data interpolatioapproach is used to interpolate
may be estimated from the chosen peak pair as the set of pointd” and fill in values for the entire local ampli-

tude envelopel;; (f,t). This is done by minimizing an error

FE that contains a target term which penalizes envelopes that
(7 do not match the sampled pointslii) and a gradient smooth-

ness term that penalizes local envelopes that are not smooth

AQmam
O(i,j) = tan™! ( )

Awmam

and
\/(Agmz)QJr (AWW)Q E = Z (frote) = AR)ZHXD VAR (9)
L Ny Nw fit
F(Z j) = 5 (8) N——

target term smoothness
whereAQ,,., andAwy,q, refers to differences between the | this work, we implement Equation 9 using the Matlab rou-
conjugate pair location coordinates. Local carrier piagej) tinegri df i t, with \ set to30. Shown in Figure 2 are exam-
is estimated by projecting the input patéh;(f,¢) onto a  ples of estimated local amplitude envelopes for varioualloc
complex GaboC*(f,t) = W(f,t) - /@7F#) with local fre-  jnput patches.
quencyF (i, j) and local orientatio® (¢, j): Intuitively, our algorithm computes the envelope only from
points located athe peaks of the underlying estimated car-
rier, throwing out all other samples. This makes our method
®(i, j) = angle Z Z W(f, )P (f,)C" (1) more robust than other methods which estimate the envelope
from all the points in the patch.
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Fig. 3. Top row, left to right: Original magnitude spectrograff{f,t), reconstructed spectrograxﬁ(f, t), amplitude enve-

lope A(f,1).

Bottom row, left to right: smooth phase surfagéf, t), rectified harmonic carriercos(¢(f,t)), Gabor patch

frequencied’(i, j), and Gabor patch orientation®(:, j). Our spectrograms are flipped so low frequency is at the top.

4. AM-FM PATCH OVERLAP-ADD

Given the estimated local amplitude envelopgs(f,t) for
each patch, we construct the complete enveldpg, ¢) for
the whole spectrogram using overlap-add:

SO W, ) A (f,t

A(f,t): 212] (f ) J(f )
Zi Ej W(fv t)

Similarly, we overlap-add the local carrietss(¢;; (f,t)) for
each patch to construct the complete cartief(o(f,t)):

. 21 Ej W(f? t)008(¢ij (f? t))
COS(¢(f7 t)) - Zi Ej W(f, t)

Obtaining an estimate of the smooth phase surdd¢et) for
the entire spectrogram is a bit more involved: We additignal
overlap-add locasinecarrierssin(¢;;(f,t)):

S, W Dsin(ey (£.1))

(10)

(11)

L) = T S W) 2
Then aprincipal phasesurface is obtained as:
_ sin(¢(f,1))
op(f,t) = atan (m) (13)

Finally, the desired smooth phase surfag¢, ¢) is obtained
by 1-D column-unwrapping the principal phase surface:

¢(f, 1) = Unwrap-1d(¢p(f, 1)) (14)
5. RESULTS AND CONCLUSIONS

We analyzed and reconstructed several test utterances of di

ferent speakers uttering the phraseHi Jane’ ' . An ex-
ample of our results is shown in Figure'3.The first and sec-
ond plots in the figure show the real spectrogréif, ¢) and

1See http://cuneus. ai.mnit.edu: 8000/ research/anfm
for more results

the reconstructed spectrograftif, t) = A(f,t)cos(o(f,t)).
The following plots depict (consecutively) the estimatea a
plitude enveloped(f,t), smooth phase surfacs f, t), (rec-
tified) harmonic carriecos(o( f,t)), Gabor patch frequencies
F(i,7), and Gabor patch orientatiofig, j).

In order to perform auditory comparisons, we synthesized
time waveforms for both original and reconstructed magni-
tude spectrograms using sinusoidal analysis/synthesiis te
niques [7]. Informal listening tests indicated that bothreve
very similar to each other, which suggests that our techeniqu
is successful at capturing the important aspects of the-spec
trogram.

Future work will consist of exploring the use of the ex-
tracted parameters for applications such as speech recogni
tion, compression, de-noising, and synthesis.
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