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Abstract I discuss the “levels of understanding” framework described in Marr’s Vision and 
propose a revised and updated version of it to capture the changes in computation and 
neuroscience over the last 30 years. 

1. The “levels of understanding” manifesto

The levels of understanding manifesto is one of the best known in Marr’s Vision 
(Marr 2009): it has been mentioned as one of the most enduring constructs  of 
twentieth century cognitive science and computational neuroscience (Wilems 2011). 
The argument is that a complex system -- like a computer and like the brain -- 
should be understood at several different levels. For the purpose of this  note, let me 
list just three levels: the hardware, the algorithms and the computations. In the 
Vision book, David emphasizes that explanations at different levels are largely 
independent of each other: a software engineer does not need to know the hardware 
in any great detail. The message was important at the time, thirty years ago: the 
study of the problems to be solved -- and of the associated computations -- is 
relevant in its own right and is needed for a full understanding of the brain. I will 
argue, however, that it is now time to re-emphasize the connections between levels 
and to extend the range of levels, if we want to make progress in computational 
neuroscience. 

To explain let me recount the background of the argument (see also Poggio, 1981, 
2010). The section in the Vision book about levels  of understanding is directly based 
on a paper (Marr and Poggio, 1977) that we wrote together for a booklet of NRP (the 
influential Neuroscience Research Program founded at MIT by Frank Schmitt). That 
paper was the original “manifesto” of our computational approach to the brain. Its 
content was a summary of long discussions that David and I had in the spring of ‘76 
about the levels of analysis  of a complex system. We started from an argument 
described in a paper (Reichardt, and Poggio 1976) on the visual system of the fly by 
Werner Reichardt and myself. We distinguished the three levels of single cells  and 
circuits, of algorithms and of behavior (of the organism). David insisted, correctly, in 
replacing (in Marr and Poggio (1977)) the behavior level with the level of 
computation and computational analysis. This was very important for defining the 
approach of computational neuroscience. One key aspect of the original argument in 
Reichardt, and Poggio (1976) however almost disappeared in the process. In 



Reichardt, and Poggio (1976) we stressed that one ought to study the brain at 
different levels of organization, from the behavior of a whole animal to the signal 
flow, i.e. the algorithms, to circuits and single cells. In particular, we expressed our 
belief -- and Werner had written about it even earlier -- that a) insights  gained on 
higher levels help to ask the right questions  and to do experiments in the right way 
on lower levels and b) it is  necessary to study nervous systems at all levels 
simultaneously. From this perspective, the importance of coupling experimental and 
theoretical work in the neurosciences follows directly: without close interaction with 
experiments, theory is very likely to be sterile. 

I believe that David would also think that it is  time to look again at the levels  of 
understanding framework -- now emphasizing the connections between levels and 
their synergies. In particular, I believe that neuroscience can help computational 
theory and even computer science as suggested by recent models  of visual cortex, 
which are leading to interesting approaches in computer vision. In ’79, when David 
wrote Vision, our belief was that computational theories may help neuroscientists. 
The rise of computational neuroscience during the last several years showed that 
this  has happened.  Importantly, the table is now turning: in the near future, 
neuroscience may well be providing new ideas  and approaches to Artificial 
Intelligence. 

2. Levels of understanding: a revision?

There is a surprising omission in Marr’s  Vision quest to understand intelligence and 
the brain, which I am sure would have been corrected if David would have lived 
longer. Of course it is  important to understand the computations and the 
representations used by the brain – this  is the main objective of the book -- but it is 
also important to understand how an individual organism -- and in fact a whole 
species – learns and evolves them from experience of the natural world. One could 
even argue that a description of the learning algorithms and their a priori 
assumptions is  deeper and more useful than a description of the details of what is 
actually learned. I have been arguing for the last two decades that the problem of 
learning is at the core of the problem of intelligence and of understanding the brain. 
Learning, I think, should have been included explicitly in Turing’s  operational 
definition of intelligence – his famous Turing test. Not surprisingly, the language of 
modern statistical learning, including regularization, SVMs, graphical models, 
hierarchical Bayes, which is  permeating various areas of computer science, is at the 
basis of many recent success stories in building intelligent artifacts such as 
DeepBlue, Watson, Siri and MobilEye, and is a key component of today’s 
computational neuroscience. It is worth noticing that knowing how to learn to do a 
specific set of computations -- say visual recognition of objects -- allow us to 
replicate the ability of recognition in machines, even without an understanding of 
which algorithms and explicit constraints are exploited! Of course, David Marr’s 
(1969, 1970, 1971) early work was on theories of associative memories (cerebellum, 
hippocampus and neo-cortex) which are still very interesting today. Here I propose -- 



and I am sure David would agree -- that learning should be added to the list of levels 
of understanding, above the computational level. 

3. Revising the levels of understanding: what it means

I think that any attempt to provide a complete list of all levels and sublevels of 
understanding is arbitrary -- to say the least. Most taxonomies are. Notice that we 
had four levels in the original paper with David but I focused here on three of them. 
At least since Goedel, we have to accept that taxonomies of intelligence have a 
certain degree of personal taste and internal inconsistency. Several of my friends 
had logically compelling arguments against adding other levels to the original ones 
and about organizing a taxonomy in different ways. These alternative revisions of the 
levels  of understanding taxonomy may in fact be logically better (see remarks 1 and 
2). In this revision however, my main motivation is to capture is to capture what 
"understanding" intelligence means for today's science.
Science is a social phenomenon: what is  accepted as a good explanation or proof 
has changed considerably through the last three centuries. In the same way, what 
people call “understanding” changes quickly. Think about molecular biology in its first 
fifty years or so: identifying a gene as responsible for a disease or a phenotype was 
a perfectly acceptable “understanding”. Today, we know that genes are not binary 
switches and are usually part of complicated networks of chemical reactions: the 
type of required understanding is changing. When David and I wrote the levels of 
understanding essay, he was really adding a new frame of mind -- a new level of 
explanation -- to older and more classical ones. The new one was the computational 
level, appropriate for the new science of computational vision and eventually for 
computational neuroscience. The “old” frames of mind were hardware, circuits and 
even algorithms -- the frames of mind of physicists  and electronic engineers. In the 
last three decade, the frame of mind of our society of scientists has progressed 
again in a Hegelian-like helix of increasing sophistication. Theoretical and practical 
successes -- for instance in vision for cars -- of Machine Learning suggests that it is 
possible to solve difficult problems in vision (and in intelligence) without a 
computational and algorithmic understanding. This is (often) an oversimplification 
but it is also not completely far off. It implies that some researchers may argue -- and 
they do -- that understanding at the level of learning is sufficiently powerful to solve a 
problem and therefore perfectly adequate as  an explanation all by itself. The same 
argument could be used at the higher level of evolution: knowing how to evolve 
learning machines frees one from having to understand specific learning modules. 
Of course full understanding for a scientist requires  understanding at all the different 
levels, of a physicist, a chemist, a computer scientist, a machine learning aficionado 
and an evolutionist. More importantly, going back to one of the main points in 
Reichardt and Poggio (1976), I would argue that todays theories and models of the 
brain should be testable at multiple levels. For instance, a theory of vision should 
address the computational, algorithmic and biophysical levels and make predictions 
at all of them. It should also address how objects  are learned for recognition and 
describe how circuits and cells learn from visual experience during development. 
Ideally, the theory should also suggest plausible ways in which evolution could have 



evolved the computations and the modules associated with the ventral stream. To 
address so many different levels of understanding and how they interact is a tall 
order for any model but it is a necessary prerequisite for any serious theory of 
intelligence.

4. Levels of understanding revised: learning

On the computational side, the theory of statistical learning has achieved a 
remarkable degree of completeness and of practical success. Within it, many 
interesting problems remain open and are a fertile ground for interesting and useful 
mathematics. I am not discussing here theoretical frameworks  other than statistical 
learning theory in the style of Vapnik and Smale, around the key tools of 
regularization and Reproducing Kernel Hilbert Spaces. The reasons are that I do not 
believe that other theoretical frameworks for learning are relevant for understanding 
learning in the brain, at least in this discussion. In particular, 1) PAC learning has 
been effectively subsumed by the more powerful and deeper statistical learning 
theory; 2) a strict Bayesian theory of learning is  useful in terms of providing a 
unifying framework for a phenomenological description of intelligent behaviors but as 
a theory of learning it does not lead directly to hard results on sample complexity 
and generalization (Epsilon and Delta, 2012); (3) Deep Learning Networks are likely 
to be just a distraction despite their current popularity, for the same reasons spelled 
out by David Marr  (1975)  (“Neural net theory.... This combines the limitations of the 
two previous theories...Again, the primary unresolved issue is what functions you 
want implemented, and why. In the absence of this knowledge, a neural net theory, 
unless it is closely tied to the known anatomy and physiology of some part of the 
brain and makes some unexpected and testable predictions, is of no value.). 
Here I want to take a broad perspective and ask: what is next in the theory of 
statistical learning from the point of view of understanding intelligence? One could 
for instance argue that the most important aspect of intelligence and of the amazing 
performance of real brains  is in fact the ability to learn. How then does statistical 
learning theory, as developed so far, compare with brains?  One of the most obvious 
differences, is the ability of people and animals to learn from very few examples.  A 
comparison with real brains offers another, and probably related, challenge to 
learning theory (Poggio and Smale 2003). Regularization-based “learning 
algorithms” correspond to one-layer architectures. Are hierarchical architectures with 
more layers justifiable in terms of learning theory? 

4.1 Hierarchical architectures and learning

It seems that learning theory does not offer any general argument in favor of 
hierarchical learning machines for regression or classification. This is  somewhat of a 
puzzle since the organization of cortex – for instance visual cortex – is strongly 
hierarchical. At the same time, hierarchical learning systems show superior 
performance in several engineering applications. Very recent theoretical work 
(Poggio, et al 2011) suggests that the hierarchical architecture of visual cortex 



follows from the need to learn, during development, a representation which simplifies 
the supervised classification problem. The hierarchy is an important preprocessing 
stage, learned in an unsupervised way during development,  transforming images 
into a representation which should provide a much lower sample complexity. The 
argument is as follows. The theory assumes that the main problem for biological 
object recognition is invariance to geometric image transformations. To motivate this 
assumption let me estimate whether the cardinality of the universe of possible 
images generated by an object originates more from intraclass variability – eg 
different types of dogs – or more from the range of possible viewpoints – including 
scale, position and rotation in 3D. Assuming a granularity of a few minutes of arc in 
terms of resolution and a visual field of say 10 degrees, one would get > 
10^3 different images of the same object from x, y translations, another factor of > 
10^3 from rotations in depth, a factor of > 10  from rotations  in the image plane and 
another factor of > 10 from scaling. This  gives on the order of  at least 10^8  
distinguishable images for a single object. On the other hand, how many 
different distinguishable (for humans) types of dogs exist within the “dog” category? 
It is  unlikely that there are more than, say, 10^2 - 10^3. From this point of view, it is a 
much greater win to be able to factor out the geometric transformations than the 
intracategory differences. The argument then is that main computational goal of the 
ventral stream is to learn (during development) and discount (during adult vision) 
image transformations. It is in fact possible to prove that hierarchical, multilayer 
architectures can compute signatures of objects that are invariant for Aff (2;R) (the 
affine group in R^2), both locally (for parts) and globally (for wholes).
There are a few general points that would follow if the theory were true for the brain.  
First, I conjecture that the above theoretical justification of hierarchical architectures 
may be be more general. Hierarchies would be built during development of a brain 
and they would represent the result of stages of unsupervised learning of invariant 
features -- in the case of vision by learning how images transform (continuous 
motion in time is the principle used to discover transformations which do not change 
identity) and how to compute “signatures” that are invariant to them.  Invariant 
features would then make the classifier task much easier in terms of sample 
complexity because they would factor out much of the variability due to local and 
global transformations. In general terms, this  is in itself a conjecture for learning 
theory. The intuition is the following. Consider distinguishing a specific face from 
other ones (thus this  is a recognition problem of the identification type and not of the 
categorization type) with a distance-based classifier. Assume that faces of different 
individuals are separated in distance more than the noise in the data. Then the 
sample complexity, e.g. in this case the number of examples needed for correct 
classification, goes from about  10^8 (no invariant representation) to 10^0 
(representation invariant to pose). Thus the tentative answer to the Poggio and 
Smale (2003) puzzle above is that hierarchical architectures may be needed to solve 
a key issue in learning theory: how to learn a “good” representation. In the vision 
case the representation is learned in an unsupervised mode and is “good” in the 
sense that is invariant to transformations in the world that change the image but not 
the identity, thereby reducing the sample complexity of recognition.



Second, the additional assumption of online, Hebbian-like learning mechanisms in 
various visual areas, implies that in the theory the tuning of neurons in the ventral 
stream (V1, V2, V4 and IT) depends qualitatively and quantitatively on the spectrum  
of the covariance of the learned transformations for different receptive fields sizes. 
Thus the theory predicts that  the ventral system should be a mirror of the symmetry/
invariance/conservation properties  (in the sense of physics) of image 
transformations in the physical world. 
It is thus natural to ask whether also in other sensory modalities, such as the 
auditory system, and possibly in other aspects of intelligence in the brain,  the tuning 
properties of neurons reflect desirable invariance to transformations of the input 
signals learned in an unsupervised way during development in order to reduce the 
complexity of recognition.

5. Levels of understanding revised: evolution

If it is important to understand how an individual organism learns to perform useful 
recognition from experience of the natural world, it is  clearly important to understand 
how a species  evolves the learning algorithms themselves. If we could understand 
how to evolve learning, we would have a way to obtain a learning machine even 
without an understanding of which specific algorithms are used to learn and what will 
be learned. There is an interesting algorithmic question here:  how do mechanistic 
pieces assemble into a whole that serves to provide innovative solutions to complex 
problems as  diverse as smell, speech, vision ... whose solutions characterize 
intelligence? From the point of view of statistical learning theory, it seems that the 
incredible effectiveness with which humans (and many animals) learn from and 
perform in the world cannot result only from superior learning algorithms, but also 
from a huge platform of knowledge and priors. This is right in the spirit of Marr’s 
computational approach: constraints, “discovered” by evolution, allow the solution of 
the typically ill-posed problems of intelligence. Thus evolution is  responsible for 
intelligence, and should be at the top of our levels of understanding. The key 
questions here are specifically about the path taken by evolution to develop 
intelligence. For instance: did intelligence, as the ability to learn, evolve from 
associative reflexes and memories with the addition of (neurally simple) primitive 
operations such as composition of different memories?

6. Levels of understanding: the 2012 revised list 

The revised list is then:



Levels of Understanding (1977--2012)

 Evolution

Learning and development

Computation

Algorithms

Wetware, hardware, circuits and components

In conclusion, not only we need to know how transistors and synapses work, which 
algorithms are used for computations such as stereo and what are the goals and the 
constraints of computations such as  object recognition but we also need to 
understand also how a child may learn recognition and how evolution could have 
discovered the learning algorithms themselves. In short, in addition to the “old, 
classical” levels, we also need to  understand what is  the role of nature and nurture 
in the development of intelligence. Only then we may be able to develop intelligent 
machines that could learn to see – and think -- without the need to be programmed 
to do it. 
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Remarks

(1) Keith Nishihara writes: Consider these questions: Is  there a computational theory for 
learning?  Are there algorithms for learning?  Are there mechanisms in the neuroanatomy 
for learning?  I think the answer to these is yes. I think it might be more useful to think of 
learning as having a computational, algorithmic and mechanisms level, as in the diagram 
below:

Computational 
Theory:

Algorithm:

Mechanism:

mathematics of 
learning

 e.g. stereo or shape 
recognition theory

particular learning 
algorithms

cortical learning 
mechanisms

e.g. channels based 
matching algorithm

e.g. cortical filtering and 
correlation mechanisms

 Vision Module: Learning:

(2) Joel Leibo writes: What is the difference between the learning and evolution 
levels?  Are they the same as one another?  Isn't evolution just a specific learning 
algorithm?  If they only differ in algorithm, then aren't they just different kinds of 
answers that you might give to questions on the 2nd (algorithmic) level?...I do not 
see how you could give a complete description of a complex system on the 
"learning" or "evolution" level.  I do not immediately see how these "levels" could be 
added without radically revising the meaning of "level" in this context.
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