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1. Generic transformations and invariance to 2. Class-specific transformations and invari-
them ance to them

It has been long recognized that a key obstacle to achiev- _WiFhin the realm of fine-grained su_bordinateTI_eveI iden-
ing human-level object recognition performanceis the prob tification, there are several non-genedeass-specifigans-
lem of invariance [0]. The human visual system excels formations. For example, faces can undergo changes in

at factoring out the image transformations that distort ob- EXPr€sston 4] and words can undergo changes in font.
ject appearance under natural conditions. Models with a Transformations of viewpoint and illumination are also hon

cortex-inspired architecture such as HMAX, [ 9 as well generic since they require knowledge of the object’s 3D

as nonbiological convolutional neural networks are in- structure and material properties which is never available
variant to translation (and in some cases scaling) by virtue!" @ Single example. All these category-specific transfor-
of their wiring. The transformations to which this approach Mations must be taken into account by a successful within-
has been applied so far ageneric transformationsa sin-  ¢/ass identification system.

gle example image of any object contains all the informa-

tion needed to synthesize a new image of the tranformed3. Learning invariance to transformations

object [L5]. In a setting in which transformation invariance ) o

must be learned from visual experience (such as for a new- We previously showed that approximations to the hard-
born human baby)’ we have shown thatitis possib'e to |earnW|red invariance in the HMAX architecture can be learned

from little visual experince how to be invariant to the trans  from natural videos in an unsupervised manner by employ-

lation of any object []. The same argument applies to all ing a temporal coherence principle, B, 16]. We had con-
generic transformations. jectured [/, 12] that invariance for all transformations, in-

_ , . L. cluding class-specific transformations can be learned in an
Generic transformations can be “factored out

. X e In recog- analogous manner. Since non-generic transformations are
nition tasks (see figure 1) and this is key to good recognition igterent in different object classes, the system that woul

performance. This is the reason underlying recent observa-resmt from such a learning process must pool over specific

tipns that random features often perform well on computer i, nsformations of templates. For example, a viewpoint-
vision tasks §,6,11,12]. invariant HMAX system would need to employ different C
For simplicity consider a specific example: HMAX. In  poolings of possibly the same S templates to represent the
an architecture such as HMAX, if an input image is encoded invariance to 3D rotation of faces vs. invariance to 3D ro-
in terms of similarity to a set of templates (typically via a tation of chairs because these two object classes fundamen-
dot product operation) and if the encoding is made invari- tally do not rotate in the same way (knowledge of the 2D
ant with respect to a transformation via appropriate paplin images that are evoked by rotating chairs is not any help
in C cells then recognition performance inherits the invari when the task is to recognize a novel rotated face from a
ance built into the encoding. The actual templates them-single training image).
selves do not enter the argument: the set of similarities of We implemented several class-specific modifications of
the input image to the templates need not be high in orderthe HMAX model P, 13]. The features we used are based
to be invariant. From this point of view, the good perfor- on patches of images as ihj] and also similar to Bart and
mance achieved with random features on some vision taskdJliman’s extended fragments§][but are not constrained to
can largely be attributed to the invariance properties ef th require similarity between all the templates to-be-pooled
architecture. Our approach is also related to Vetter and Poggio’s previ-
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ous work in graphics where they were able to synthesize [3] P. Foldiak.
images of a novel face at any orientation using a single ex-

ample image of the novel face and a large library of other [4]

(familiar) faces seen at all orientatioris [ 5]. Unlike Vet-

ter and Poggio’s previous work, the present model, with the

goal of categorization rather than graphic synthesis, does

not require detailed correspondence between points or re- [

gions in the library of familiar faces.

These class-specific modifications of the HMAX model
achieve good viewpoint-invariant performance in a one-sho
identification task (see figure 2). Performance suffers when
a model that is specialized for 3D rotations of one class
is tested on identification within a different class. In fact
viewpoint-pooling models employing templates from the
wrong class perform worse on viewpoint invariant identifi-

(6]

(7]

cation tasks than models that have no particular mechanismsj8]

for dealing with viewpoint at all (see figure 3). This is in

stark contrast to the generic case where the model is invari-
ant to all classes undergoing the transformation no matter

what templates are used.

This approach to within-category identification can be
extended to learn invariance to any transformation for whic

9]

appropriate templates can be obtained from an object of the[lo]

class undergoing the transformation.
Remarks

[11]

e It has not escaped our attention that the use of class

specific tranformations by a recognition architecture

implies the need for class-specific modules. This is a [12]

nice computational argument for the existence of brain

modules such as the network of face patches found by

Freiwald and Tsaol}4].

e Based on arguments such as the ones we havdl3]

sketched, we conjecture that the choice of the dictio-
nary of S templates is not critical. The critical factor in
determining recognition performace on identification
and categorization tasks is the equivalence class deter*
mined by the C cells’ pooling.

We also conjecture that the hierarchical architecture of [t

visual cortex is determined by the need to learn from
experience increasingly complex transformations from

[14

|

]

translation and scaling to viewpoint, facial expression, [16]

and body pose.
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CONJECTURE: TRANSFORMATION INVARIANCE IS KEY

There are generic transformations

which are the same for all object classes— and class-specific transforma-

tions. Invariance to both can be acquired by unsupervised temporal association-based learning [1, 2, 3].

—
SNVARIANCE IS THE HARD PART

HIERARCHIES FOR INVARIANCE
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SYENERIC TRANSFORMATIONS
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Following [4], S1 —> C2 layers discount translation and
scaling. We added two additional layers: S3 —> C3 for
viewpoint or illumination.

POSE INVARIANT RECOGNITION
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Viewpoint and illumination transformations depend
on the object’s 3D structure and material proper-
ties. These are normally consistent within, but not
between, classes. Class-specific modifications of the
HMAX model achieve good viewpoint and illumina-
tion tolerant performance in a one-shot identification
task. Performance suffers when a model that is spe-
cialized for transformations of one class is tested
on identification within a different class. In fact,
viewpoint-pooling models employing templates from
the wrong class perform worse on viewpoint invariant
identification tasks than models that have no partic-
ular mechanisms for dealing with viewpoint at all.
The same situation arises for illumination invariance.
This is in stark contrast to the generic case where
the model is invariant to all classes undergoing the
transformation no matter what templates are used.

The need to acquire invariance to class-specific
transformations provides a nice computational argu-
ment for the existence of specialized face-processing
patches in visual cortex [5, 6
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