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IF  P HYSICS WAS  the science of the first half of the 
20th century, biology was certainly the science of the 
second half. Neuroscience is now often cited as one 
of the key scientific focuses of the 21st century and 
has indeed grown rapidly in recent years, spanning a 
range of approaches, from molecular neurobiology to 
neuro-informatics and computational neuroscience. 
Computer science gave biology powerful new data-
analysis tools that yielded bioinformatics and 
genomics, making possible the sequencing of 
the human genome. Similarly, computer science 
techniques are at the heart of brain imaging and other 
branches of neuroscience. 

Computers are critical for the neurosciences, 
though at a much deeper level, representing the best 

metaphor for the central mystery of 
how the brain produces intelligent be-
havior and intelligence itself. They also 
provide experimental tools for infor-
mation processing, effectively testing 
theories of the brain, particularly those 
involving aspects of intelligence (such 
as sensory perception). The contribu-
tion of computer science to neurosci-
ence happens at multiple levels and 
is well recognized. Perhaps less obvi-
ous is that neuroscience is beginning 
to contribute powerful new ideas and 
approaches to artificial intelligence 
and computer science as well. Modern 
computational neuroscience models 
are no longer toy models but quantita-
tively detailed while beginning to com-
pete with state-of-the-art computer-
vision systems. Here, we explore how 
computational neuroscience could be-
come a major source of new ideas and 
approaches in artificial intelligence. 

Understanding the processing of in-
formation in our cortex is a significant 
part of understanding how the brain 
works and understanding intelligence 
itself. For example, vision is one of our 
most developed senses. Primates easily 
categorize images or parts of images, 
as in, say, an office scene or a face with-
in a scene, identifying specific objects. 
Our visual capabilities are exceptional, 
and, despite decades of engineering, 
no computer algorithm is yet able to 
match the performance of the primate 
visual system. 

Our visual cortex may serve as a 
proxy for the rest of the cortex and thus 
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Neuroscience is beginning to inspire  
a new generation of seeing machines. 
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 key insights
    The past century of neuroscience 

research has begun to answer 
fundamental questions ranging from  
the intricate inner workings of  
individual neurons to understanding  
the collective behavior of networks  
of millions of neurons. 

    A key challenge for the visual cortex is 
how to deal with the poverty-of-stimulus 
problem. 

    A major goal of the visual system is how 
to adapt to the statistics of its natural 
environment through visual experience 
and even evolution. 
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for intelligence itself. There is little 
doubt that even a partial solution to the 
question of which computations are 
performed by the visual cortex would 
be a major breakthrough in computa-
tional neuroscience and more broadly 
in neuroscience. It would begin to ex-
plain one of the most amazing abili-
ties of the brain and open doors to 
other aspects of intelligence (such as 
language and planning). It would also 
bridge the gap between neurobiology 
and the various information sciences, 
making it possible to develop com-
puter algorithms that follow the in-
formation-processing principles used 
by biological organisms and honed by 
natural evolution. 

The past 60 years of experimental 
work in visual neuroscience has gen-
erated a large and rapidly increasing 

amount of data. Today’s quantitative 
models bridge several levels of under-
standing, from biophysics to physiol-
ogy to behavior. Some of these models 
compete with state-of-the-art comput-
er-vision systems and are close to hu-
man-level performance for specific vi-
sual tasks. 

Here, we describe recent work to-
ward a theory of cortical visual process-
ing. Unlike other models that address 
the computations in a given brain area 
(such as primary visual cortex) or at-
tempt to explain a particular phenom-
enon (such as contrast adaptation and 
specific visual illusion), we describe 
a large-scale model that attempts to 
mimic the main information-process-
ing steps across multiple brain areas 
and millions of neuron-like units. A 
first step toward understanding corti-

cal functions may take the form of a 
detailed, neurobiologically plausible 
model, accounting for the connectiv-
ity, biophysics, and physiology of the 
cortex. 

Models provide a much-needed 
framework for summarizing and in-
tegrating existing data and planning, 
coordinating, and interpreting new ex-
periments. They can be powerful tools 
in basic research, integrating knowl-
edge across multiple levels of analysis, 
from molecular to synaptic, cellular, 
systems, and complex visual behavior. 
However, models, as we discuss later, 
are limited in explanatory power but 
should, ideally, lead to a deeper and 
more general theory. Here, we discuss 
the role of the visual cortex and review 
key computational principles underly-
ing the processing of information dur-
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ing visual recognition, then explore a 
computational neuroscience model 
(representative of a class of older mod-
els) that implements these principles, 
including some of the evidence in its 
favor. When tested with natural imag-
es, the model performs robust object 
recognition on par with computer-vi-
sion systems and human performance 
for a specific class of quick visual-rec-
ognition tasks. The initial success of 
this research represents a case in point 
for arguing that over the next decade 
progress in computer vision and arti-
ficial intelligence promises to benefit 
directly from progress in neuroscience. 

Goal of the Visual System 
A key computational issue in object 
recognitiona is the specificity-invari-
ance trade-off: Recognition must be 
able to finely discriminate between dif-
ferent objects or object classes (such as 
the faces in Figure 1) while being tol-
erant of object transformations (such 
as scaling, translation, illumination, 
changes in viewpoint, and clutter), 
as well as non-rigid transformations 
(such as variations in shape within a 
class), as in the change of facial expres-
sion in recognizing faces. 

A key challenge posed by the visual 
cortex is how well it deals with the pov-
erty-of-stimulus problem, or simple 
lack of visual information. Primates 
are able to learn to recognize an object 
in quite different images from far few-
er labeled examples than are predicted 
by our present learning theory and 
algorithms. For instance, discrimina-
tive algorithms (such as support vector 
machines, or SVMs) can learn a com-
plex object-recognition task from a few 
hundred labeled images. This number 
is small compared to the apparent di-
mensionality of the problem (millions 
of pixels), but a child, even a monkey, is 
apparently able to learn the same task 
from a handful of examples. As an ex-
ample of the prototypical problem in 
visual recognition, imagine a (naïve) 
machine is shown an image of a given 
person and an image of another per-
son. The system’s task is to discrimi-

a Within recognition, one distinguishes be-
tween identification and categorization. From 
a computational point of view, both involve 
classification and represent two points on a 
spectrum of generalization levels.

nate future images of these two people 
without seeing other images of them, 
though it has seen many images of oth-
er people and objects and their trans-
formations and may have learned from 
them in an unsupervised way. Can the 
system learn to perform the classifica-
tion task correctly with just two (or a 
few) labeled examples? 

Imagine trying to build such a clas-
sifier from the output of two cortical 
cells, as in Figure 1. Here, the response 
of the two cells defines a 2D feature 
space to represent visual stimuli. In a 
more realistic setting, objects would 
be represented by the response pat-
terns of thousands of such neurons. In 
the figure, we denote visual examples 
from the two people with + and – signs; 
panels (A) and (B) illustrate what the 
recognition problem would look like 
when these two neurons are sensitive 
vs. invariant to the precise position of 
the object within their receptive fields.b 
In each case, a separation (the red lines 
indicate one such possible separation) 

b The receptive field of a neuron is the part 
of the visual field that (properly stimulated) 
could elicit a response from the neuron.

can be found between the two classes. 
It has been shown that certain learning 
algorithms (such as SVMs with Gauss-
ian kernels) can solve any discrimina-
tion task with arbitrary difficulty (in the 
limit of an infinite number of training 
examples). That is, with certain classes 
of learning algorithms we are guaran-
teed to be able to find a separation for 
the problem at hand irrespective of the 
difficulty of the recognition task. How-
ever, learning to solve the problem may 
require a prohibitively large number of 
training examples. 

In separating two classes, the two 
representations in panels (A) and (B) 
are not equal; the one in (B) is far su-
perior to the one in (A). With no prior 
assumption on the class of functions 
to be learned, the “simplest” classi-
fier that can separate the data in (B) is 
much simpler than the “simplest” clas-
sifier that separates the data in (A). The 
number of wiggles of the separation 
line (related to the number of parame-
ters to be learned) gives a hand-wavy es-
timate of the complexity of a classifier. 
The sample complexity of the problem 
derived from the invariant representa-
tion in (B) is much lower than that of 

Figure 1. Sample complexity. 
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A hypothetical 2D (face) classification problem (red) line. One class is represented with + and 
the other with – symbols. Insets are 2D transformations (translation and scales) applied to 
examples from the two categories. Panels (A) and (B) are two different representations of the 
same set of images. (B), which is tolerant with respect to the exact position and scale of the 
object within the image, leads to a simpler decision function (such as a linear classifier) and 
requires fewer training examples to achieve similar performance, thus lowering the sample 
complexity of the classification problem. In the limit, learning in (B) could be done with only two 
training examples (blue). 
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the problem in (A). Learning to catego-
rize the data-points in (B) requires far 
fewer training examples than in (A) and 
may be done with as few as two exam-
ples. The key problem in vision is thus 
what can be learned effectively with 
only a small number of examples.c

The main point is not that a low-level 
representation provided from the reti-
na would not support robust object rec-
ognition. Indeed, relatively good com-
puter-vision systems developed in the 
1990s were based on simple retina-like 
representations and rather complex 
decision functions (such as radial basis 
function networks). The main problem 
of these systems is they required a pro-
hibitively large number of training ex-
amples compared to humans. 

More recent work in computer vi-
sion suggests a hierarchical architec-
ture may provide a better solution to 
the problem; see also Bengio and Le 
Cun1 for a related argument. For in-
stance, Heisele et al.10 designed a hi-
erarchical system for the detection 
and recognition of faces, an approach 
based on a hierarchy of “component 
experts” performing a local search for 
one facial component (such as an eye 
or a nose) over a range of positions and 
scales. Experimental evidence from 
Heisele et al.10 suggests such hierarchi-
cal systems based exclusively on linear 
(SVM) classifiers significantly outper-
form a shallow architecture that tries 
to classify a face as a whole, albeit by 
relying on more complex kernels. 

The visual system may be using a 
similar strategy to recognize objects, 
with the goal of reducing the sample 
complexity of the classification prob-
lem. In this view, the visual cortex 
transforms the raw image into a posi-
tion- and scale-tolerant representa-
tion through a hierarchy of processing 
stages, whereby each layer gradually 
increases the tolerance to position 
and scale of the image representation. 
After several layers of such processing 
stages, the resulting image representa-
tion can be used much more efficiently 
for task-dependent learning and classi-

c The idea of sample complexity is related to 
the point made by DiCarlo and Cox4 about the 
main goal of processing information from the 
retina to higher visual areas to be “untangling 
object representations,” so a simple linear 
classifier can discriminate between any two 
classes of objects.

fication by higher brain areas. 
These stages can be learned during 

development from temporal streams 
of natural images by exploiting the sta-
tistics of natural environments in two 
ways: correlations over images that 
provide information-rich features at 
various levels of complexity and sizes; 
and correlations over time used to 
learn equivalence classes of these fea-
tures under transformations (such as 
shifts in position and changes in scale). 
The combination of these two learning 
processes allows efficient sharing of vi-
sual features between object categories 
and makes learning new objects and 
categories easier, since they inherit the 
invariance properties of the represen-
tation learned from previous experi-
ence in the form of basic features com-
mon to other objects. In the following 
sections, we review evidence for this 
hierarchical architecture and the two 
correlation mechanisms described 
earlier. 

Hierarchical Architecture 
and Invariant Recognition 
Several lines of evidence (from both 
human psychophysics and monkey 
electrophysiology studies) suggest the 
primate visual system exhibits at least 
some invariance to position and scale. 
While the precise amount of invari-
ance is still under debate, there is gen-
eral agreement as to the fact that there 
is at least some generalization to posi-
tion and scale. 

The neural mechanisms underlying 
such invariant visual recognition have 
been the subject of much computa-
tional and experimental work since the 
early 1990s. One general class of com-
putational models postulates that the 
hierarchical organization of the visual 
cortex is key to this process; see also 
Hegdé and Felleman9 for an alterna-
tive view. The processing of shape in-
formation in the visual cortex follows a 
series of stages, starting with the retina 
and proceeding through the lateral ge-
niculate nucleus (LGN) of the thala-
mus to primary visual cortex (V1) and 
extrastriate visual areas, V2, V4, and 
the inferotemporal (IT) cortex. In turn, 
IT provides a major source of input to 
the prefrontal cortex (PFC) involved in 
linking perception to memory and ac-
tion; see Serre et al.29 for references. 

As one progresses along the ventral 

The role of  
the anatomical 
back-projections 
present  
(in abundance) 
among almost all 
areas in  
visual cortex is  
a matter of debate. 
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stream of the visual cortex, neurons 
become selective for stimuli that are 
increasingly complex—from simple 
oriented bars and edges in early visual 
area V1 to moderately complex fea-
tures in intermediate areas (such as a 
combination of orientations) to com-
plex objects and faces in higher visual 
areas (such as IT). Along with this in-
crease in complexity of the preferred 
stimulus, the invariance properties of 
neurons seem to also increase. Neu-
rons become more and more tolerant 
with respect to the exact position and 
scale of the stimulus within their re-
ceptive fields. As a result, the receptive 
field size of neurons increases from 
about one degree or less in V1 to sev-
eral degrees in IT. 

Compelling evidence suggests that 
IT, which has been critically linked 
with a monkey’s ability to recognize 
objects, provides a representation of 
the image that facilitates recognition 
tolerant of image transformations. For 
instance, Logothetis et al.16 showed 
that monkeys can be trained to recog-
nize paperclip-like wireframe objects 
at a specific location and scale. After 
training, recordings in their IT cor-
tex revealed significant selectivity for 
the trained objects. Because monkeys 
were unlikely to have been in contact 
with the specific paperclip prior to 
training, this experiment provides in-
direct evidence of learning. More im-
portant, Logothetis et al.16 found se-
lective neurons also exhibited a range 
of invariance with respect to the exact 
position (two to four degrees) and 
scale (around two octaves) of the stim-
ulus, which was never presented be-
fore testing at these new positions and 
scales. In 2005, Hung et al.12 showed it 
was possible to train a (linear) classi-
fier to robustly read out from a popula-
tion of IT neurons the category infor-
mation of a briefly flashed stimulus. 
Hung et al. also showed the classifier 
was able to generalize to a range of 
positions and scales (similar to Logo-
thetis et al.’s data) not presented dur-
ing the training of the classifier. This 
generalization suggests the observed 
tolerance to 2D transformation is a 
property of the population of neurons 
learned from visual experience but 
available for a novel object without 
object-specific learning, depending 
on task difficulty. 

showed the patterns of neural activity 
elicited by certain ecologically impor-
tant classes of objects (such as faces 
and places in monozygotic twins) are 
significantly more similar than in di-
zygotic twins. These results suggest 
that genes may play a significant role 
in the way the visual cortex is wired to 
process certain object classes. Mean-
while, several electrophysiological 
studies have demonstrated learning 
and plasticity in the adult monkey; 
see, for instance, Li and DiCarlo.15 
Learning is likely to be both faster and 
easier to elicit in higher visually re-
sponsive areas (such as PFC and IT15) 
than in lower areas. 

This learning result makes intui-
tive sense. For the visual system to re-
main stable, the time scale for learning 
should increase ascending the ventral 
stream.d In the Figure 2 model, we as-
sumed unsupervised learning from V1 
to IT happens during development in 
a sequence starting with the lower ar-
eas. In reality, learning might continue 
throughout adulthood, certainly at the 
level of IT and perhaps in intermediate 
and lower areas as well. 

Unsupervised learning in the ventral 
stream of the visual cortex. With the ex-
ception of the task-specific units at the 
top of the hierarchy (“visual routines”), 
learning in the model in Figure 2 is un-
supervised, thus closely mimicking a 
developmental learning stage. 

As emphasized by several authors, 
statistical regularities in natural visual 
scenes may provide critical cues to the 
visual system for learning with very 
limited or no supervision. A key goal of 
the visual system may be to adapt to the 
statistics of its natural environment 
through visual experience and perhaps 
evolution, too. In the Figure 2 model, 
the selectivity of simple and complex 
units can be learned from natural vid-
eo sequences (see supplementary ma-

d In the hierarchical model in Figure 1, learning 
proceeds layer by layer, starting at the bottom, 
a process similar to recent work by Hinton11 
but that is quite different from the original 
neural networks that used back-propagation 
and simultaneously learned all layers at the 
same time. Our implementation includes the 
unsupervised learning of features from natu-
ral images but assumes the learning of posi-
tion and scale tolerance, thus hardwired in the 
model; see Masquelier et al.18 for an initial at-
tempt at learning position and scale tolerance 
in the model.

Computational Models of 
Object Recognition in Cortex 
We developed26,29 (in close coopera-
tion with experimental labs) an initial 
quantitative model of feedforward hi-
erarchical processing in the ventral 
stream of the visual cortex (see Figure 
2). The resulting model effectively inte-
grates the large body of neuroscience 
data (summarized earlier) character-
izing the properties of neurons along 
the object-recognition processing hier-
archy. The model also mimics human 
performance in difficult visual-recog-
nition tasks28 while performing at least 
as well as most current computer-vi-
sion systems.27 

Feedforward hierarchical mod-
els have a long history, beginning in 
the 1970s with Marko and Giebel’s 
homogeneous multilayered archi-
tecture17 and later Fukushima’s Neo-
cognitron.6 One of their key compu-
tational mechanisms originates from 
the pioneering physiological stud-
ies and models of Hubel and Wiesel 
(http://serre-lab.clps.brown.edu/re-
sources/ACM2010). The basic idea is 
to build an increasingly complex and 
invariant object representation in a 
hierarchy of stages by progressively 
integrating, or pooling, convergent 
inputs from lower levels. Building on 
existing models (see supplementary 
notes http://serre-lab.clps.brown.
edu/resources/ACM2010), we have 
been developing24,29 a similar compu-
tational theory that attempts to quan-
titatively account for a host of recent 
anatomical and physiological data; 
see also Mutch and Lowe19 and Mas-
quelier et al.18 

The feedforward hierarchical mod-
el in Figure 2 assumes two classes of 
functional units: simple and complex. 
Simple act as local template-matching 
operators, increasing the complexity of 
the image representation by pooling 
over local afferent units with selectiv-
ity for different image features (such as 
edges at different orientations). Com-
plex increase the tolerance of the rep-
resentation with respect to 2D transfor-
mations by pooling over afferent units 
with similar selectivity but slightly dif-
ferent positions and scales. 

Learning and plasticity. How the 
organization of the visual cortex is in-
fluenced by development vs. genetics 
is a matter of debate. An fMRI study21 
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terial http://serre-lab.clps.brown.edu/
resources/ACM2010 for details). 

Supervised learning in higher ar-
eas. After this initial developmental 
stage, learning a new object category 
requires training only of task-specif-
ic circuits at the top of the ventral-
stream hierarchy, thus providing a 
position and scale-invariant represen-
tation to task-specific circuits beyond 
IT to learn to generalize over trans-
formations other than image-plane 
transformations (such as 3D rotation) 
that must be learned anew for each 
object or category. For instance, pose-
invariant face categorization circuits 
may be built, possibly in PFC, by com-
bining several units tuned to different 
face examples, including different 
people, views, and lighting conditions 
(possibly in IT). 

A default routine may be running in 
a default state (no specific visual task), 
perhaps the routine What is there? 
As an example of a simple routine con-
sider a classifier that receives the activ-
ity of a few hundred IT-like units, tuned 
to examples of the target object and 
distractors. While learning in the mod-
el from the layers below is stimulus-
driven, the PFC-like classification units 
are trained in a supervised way follow-
ing a perceptron-like learning rule. 

Immediate Recognition 
The role of the anatomical back-projec-
tions present (in abundance) among 
almost all areas in the visual cortex is 
a matter of debate. A commonly ac-
cepted hypothesis is that the basic pro-
cessing of information is feedforward,30 
supported most directly by the short 
times required for a selective response 
to appear in cells at all stages of the hi-
erarchy. Neural recordings from IT in 
a monkey12 show the activity of small 
neuronal populations over very short 
time intervals (as short as 12.5ms and 
about 100ms after stimulus onset) con-
tains surprisingly accurate and robust 
information supporting a variety of 
recognition tasks. While this data does 
not rule out local feedback loops within 
an area, it does suggest that a core hi-
erarchical feedforward architecture 
(like the one described here) may be a 
reasonable starting point for a theory of 
the visual cortex, aiming to explain im-
mediate recognition, the initial phase 
of recognition before eye movement 

and high-level processes take place. 
Agreement with experimental data. 

Since its original development in the 
late 1990s,24,29 the model in Figure 2 
has been able to explain a number of 
new experimental results, including 
data not used to derive or fit model pa-
rameters. The model seems to be qual-
itatively and quantitatively consistent 
with (and in some cases predicts29) 
several properties of subpopulations 
of cells in V1, V4, IT, and PFC, as well 
as fMRI and psychophysical data (see 
the sidebar “Quantitative Data Com-
patible with the Model” for a complete 
list of findings). 

We compared the performance of 
the model against the performance 
of human observers in a rapid animal 
vs. non-animal recognition task28 for 
which recognition is quick and cortical 
back-projections may be less relevant. 
Results indicate the model predicts 
human performance quite well during 
such a task, suggesting the model may 

indeed provide a satisfactory descrip-
tion of the feedforward path. In par-
ticular, for this experiment, we broke 
down the performance of the model 
and human observers into four image 
categories with varying amounts of 
clutter. Interestingly, the performance 
of both the model and the human ob-
servers was most accurate (~90% cor-
rect for both human participants and 
the model) on images for which the 
amount of information is maximal and 
clutter minimal and decreases monoti-
cally as the clutter in the image increas-
es. This decrease in performance with 
increasing clutter likely reflects a key 
limitation of this type of feedforward 
architecture. This result is in agree-
ment with the reduced selectivity of 
neurons in V4 and IT when presented 
with multiple stimuli within their re-
ceptive fields for which the model pro-
vides a good quantitative fit29 with neu-
rophysiology data (see the sidebar). 

Application to computer vision. 

Figure 2. Hierarchical feedforward models of the visual cortex. 
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es,13 finding that the model of the dor-
sal stream competed with a state-of-
the-art action-recognition system (that 
outperformed many other systems) on 
all three data sets.13 A direct extension 
of this approach led to a computer sys-
tem for the automated monitoring and 
analysis of rodent behavior for behav-
ioral phenotyping applications that 
perform on par with human manual 
scoring. We also found the learning in 

this model produced a large dictionary 
of optic-flow patterns that seems con-
sistent with the response properties of 
cells in the medial temporal (MT) area 
in response to both isolated gratings 
and plaids, or two gratings superim-
posed on one another. 

Conclusion 
Demonstrating that a model designed 
to mimic known anatomy and physiol-

How does the model29 perform real-
world recognition tasks? And how 
does it compare to state-of-the-art 
artificial-intelligence systems? Given 
the specific biological constraints the 
theory must satisfy (such as using only 
biophysically plausible operations, 
receptive field sizes, and a range of in-
variances), it was not clear how well the 
model implementation would perform 
compared to systems heuristically en-
gineered for these complex tasks. 

Several years ago, we were surprised 
to find the model capable of recogniz-
ing complex images,27 performing at a 
level comparable to some of the best 
existing systems on the CalTech-101 
image database of 101 object catego-
ries with a recognition rate of about 
55% (chance level < 1%); see Serre et 
al.27 and Mutch and Lowe.19 A related 
system with fewer layers, less invari-
ance, and more units had an even bet-
ter recognition rate on the CalTech 
data set.20 

We also developed an automated 
system for parsing street-scene im-
ages27 based in part on the class of 
models described earlier. The system 
recognizes seven different object cat-
egories—cars, pedestrians, bikes, 
skies, roads, buildings, trees—from 
natural images of street scenes de-
spite very large variations in shape 
(such as trees in summer and winter 
and SUVs and compact cars from any 
point of view). 

Content-based recognition and 
search in videos is an emerging ap-
plication of computer vision, whereby 
neuroscience may again suggest an 
avenue for approaching the problem. 
In 2007, we developed an initial mod-
el for recognizing biological motion 
and actions from video sequences 
based on the organization of the dor-
sal stream of the visual cortex,13 which 
is critically linked to the processing 
of motion information, from V1 and 
MT to higher motion-selective areas 
MST/FST and STS. The system relies 
on computational principles similar 
to those in the model of the ventral 
stream described earlier but that start 
with spatio-temporal filters modeled 
after motion-sensitive cells in the pri-
mary visual cortex. 

We evaluated system performance 
for recognizing actions (human and 
animal) in real-world video sequenc-

Black corresponds to data used to derive the parameters of the model, red to data 
consistent with the model (not used to fit model parameters), and blue to actual  
correct predictions by the model. Notations: PFC (prefrontal cortex), V1 (visual  
area I or primary visual cortex), V4 (visual area IV), and IT (inferotemporal cortex). 
Data from these areas corresponds to monkey electrophysiology studies. LOC (Lateral 
Occipital Complex) involves fMRI with humans. The psychological studies are 
psychophysics on human subjects. 

Quantitative Data  
Compatible with  
the Model 

Area Type of data Ref. biol. data Ref. model data

Psych. Rapid animal categorization (1) (1)

Face inversion effect (2) (2)

LOC Face processing (fMRI) (3) (3)

PFC Differential role of IT and PFC in categorization (4) (5)

IT Tuning and invariance properties (6) (5)

Read out for object category (7) (8,9)

Average effect in IT (10) (10)

V4 MAX operation (11) (5)

Tuning for two-bar stimuli (12) (8,9)

Two-spot interaction (13) (8)

Tuning for boundary conformation (14) (8,15)

Tuning for Cartesian and non-Cartesian gratings (16) (8)

V1 Simple and complex cells tuning properties (17–19) (8)

MAX operation in subset of complex cells (20) (5)
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ogy of the primate visual system leads 
to good performance with respect to 
computer-vision benchmarks may 
suggest neuroscience is on the verge 
of providing novel and useful para-
digms to computer vision and per-
haps to other areas of computer sci-
ence as well. The feedforward model 
described here can be modified and 
improved by taking into account new 
experimental data (such as more de-
tailed properties of specific visual 
areas like V125), implementing some 
of its implicit assumptions (such as 
learning invariances from sequences 
of natural images), taking into ac-
count additional sources of visual in-
formation (such as binocular disparity 
and color), and extention to describe 
the detailed dynamics of neural re-
sponses. Meanwhile, the recognition 
performance of models of this general 
type can be improved by exploring pa-
rameters (such as receptive field sizes 
and connectivity) by, say, using com-
puter-intensive iterations of a muta-
tion-and-test cycle. 

 However, it is important to realize 
the intrinsic limitations of the specific 
computational framework we have 
described and why it is at best a first 
step toward understanding the visual 
cortex. First, from the anatomical and 
physiological point of view the class of 
feedforward models we’ve described 
here is incomplete, as it does not ac-
count for the massive back-projections 
found in the cortex. To date, the role 
of cortical feedback remains poorly 
understood. It is likely that feedback 
underlies top-down signals related to 
attention, task-dependent biases, and 
memory. Back-projections must also 
be taken into account in order to de-
scribe visual perception beyond the 
first 100msec–200msec. 

Given enough time, humans use 
eye movement to scan images, and 
performance in many object-recog-
nition tasks improves significantly 
over that obtained during quick pre-
sentations. Extensions of the model 
to incorporate feedback are possible 
and under way.2 Feedforward models 
may well turn out to be approximate 
descriptions of the first 100msec–
200msec of the processing required by 
more complex theories of vision based 
on back-projections.3,5,7,8,14,22,31 How-
ever, the computations involved in 
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the initial phase are nontrivial but es-
sential for any scheme involving feed-
back. A related point is that normal 
visual perception is much more than 
classification, as it involves interpret-
ing and parsing visual scenes. In this 
sense, the class of models we describe 
is limited, since it deals only with clas-
sification tasks. More complex archi-
tectures are needed; see Serre et al.26 
for a discussion. 

Finally, we described a class of 
models, not a theory. Computational 
models are not sufficient on their 
own. Our model, despite describing 
(quantitatively) aspects of monkey 
physiology and human recognition, 
does not yield a good understanding 
of the computational principles of 
the cortex and their power. What is yet 
needed is a mathematical theory to ex-
plain the hierarchical organization of 
the cortex. 
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