Follow the link for each class to find a detailed description, suggested readings, and class slides. Some of the later classes may be subject to reordering or rescheduling.
Reading List
Notes covering the classes will be provided in the form of independent chapters of a book currently in draft format. Additional information will be given through the slides associated with classes (where applicable). The books/papers listed below are useful general reference reading, especially from the theoretical viewpoint. A list of additional suggested readings will also be provided separately for each class.
Book (draft)
- L. Rosasco and T. Poggio, Machine Learning: a Regularization Approach, MIT-9.520 Lectures Notes, Manuscript, Dec. 2017 (provided).
Primary References
- S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press, 2014.
- T. Hastie, R. Tibshirani and J. Friedman. The Elements of Statistical Learning. 2nd Ed., Springer, 2009.
- I. Steinwart and A. Christmann. Support Vector Machines. Springer, 2008.
- O. Bousquet, S. Boucheron and G. Lugosi. Introduction to Statistical Learning Theory. Advanced Lectures on Machine Learning, LNCS 3176, pp. 169-207. (Eds.) Bousquet, O., U. von Luxburg and G. Ratsch, Springer, 2004.
- N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, 2000.
- F. Cucker and S. Smale. On The Mathematical Foundations of Learning. Bulletin of the American Mathematical Society, 2002.
- F. Cucker and D-X. Zhou. Learning theory: an approximation theory viewpoint. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, 2007.
- L. Devroye, L. Gyorfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition. Springer, 1997.
- T. Evgeniou, M. Pontil and T. Poggio. Regularization Networks and Support Vector Machines. Advances in Computational Mathematics, 2000.
- T. Poggio and S. Smale. The Mathematics of Learning: Dealing with Data. Notices of the AMS, 2003.
- V. N. Vapnik. Statistical Learning Theory. Wiley, 1998.
- V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, 2000.
- S. Villa, L. Rosasco, T. Poggio. On Learnability, Complexity and Stability. Empirical Inference: Festschrift in Honor of Vladimir N. Vapnik, Chapter 7, pp. 59-70, Springer-Verlag, 2013.
- T. Poggio, H. Mhaskar, L. Rosasco, B. Miranda, and Q. Liao. Why and When can Deep-but not Shallow-Networks Avoid the Curse of Dimensionality: A Review. International Journal of Automation and Computing, 1-17, 2017.
- Y. LeCun, Y. Bengio and G. Hinton, Deep Learning, Nature, 436-444, 2015.
Resources and links
- Machine Learning 2017-2018. University of Genoa, graduate ML course.
- L. Rosasco, Introductory Machine Learning Notes, University of Genoa, ML 2016/2017 lectures notes, Oct. 2016.